123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397 |
- /*
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- * KIND, either express or implied. See the License for the
- * specific language governing permissions and limitations
- * under the License.
- */
- /**
- * AUTO-GENERATED FILE. DO NOT MODIFY.
- */
- /*
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- * KIND, either express or implied. See the License for the
- * specific language governing permissions and limitations
- * under the License.
- */
- import { makeInner, getDataItemValue, queryReferringComponents, SINGLE_REFERRING } from '../../util/model.js';
- import { createHashMap, each, isArray, isString, isObject, isTypedArray } from 'zrender/lib/core/util.js';
- import { SOURCE_FORMAT_ORIGINAL, SOURCE_FORMAT_ARRAY_ROWS, SOURCE_FORMAT_OBJECT_ROWS, SERIES_LAYOUT_BY_ROW, SOURCE_FORMAT_KEYED_COLUMNS } from '../../util/types.js'; // The result of `guessOrdinal`.
- export var BE_ORDINAL = {
- Must: 1,
- Might: 2,
- Not: 3 // Other cases
- };
- var innerGlobalModel = makeInner();
- /**
- * MUST be called before mergeOption of all series.
- */
- export function resetSourceDefaulter(ecModel) {
- // `datasetMap` is used to make default encode.
- innerGlobalModel(ecModel).datasetMap = createHashMap();
- }
- /**
- * [The strategy of the arrengment of data dimensions for dataset]:
- * "value way": all axes are non-category axes. So series one by one take
- * several (the number is coordSysDims.length) dimensions from dataset.
- * The result of data arrengment of data dimensions like:
- * | ser0_x | ser0_y | ser1_x | ser1_y | ser2_x | ser2_y |
- * "category way": at least one axis is category axis. So the the first data
- * dimension is always mapped to the first category axis and shared by
- * all of the series. The other data dimensions are taken by series like
- * "value way" does.
- * The result of data arrengment of data dimensions like:
- * | ser_shared_x | ser0_y | ser1_y | ser2_y |
- *
- * @return encode Never be `null/undefined`.
- */
- export function makeSeriesEncodeForAxisCoordSys(coordDimensions, seriesModel, source) {
- var encode = {};
- var datasetModel = querySeriesUpstreamDatasetModel(seriesModel); // Currently only make default when using dataset, util more reqirements occur.
- if (!datasetModel || !coordDimensions) {
- return encode;
- }
- var encodeItemName = [];
- var encodeSeriesName = [];
- var ecModel = seriesModel.ecModel;
- var datasetMap = innerGlobalModel(ecModel).datasetMap;
- var key = datasetModel.uid + '_' + source.seriesLayoutBy;
- var baseCategoryDimIndex;
- var categoryWayValueDimStart;
- coordDimensions = coordDimensions.slice();
- each(coordDimensions, function (coordDimInfoLoose, coordDimIdx) {
- var coordDimInfo = isObject(coordDimInfoLoose) ? coordDimInfoLoose : coordDimensions[coordDimIdx] = {
- name: coordDimInfoLoose
- };
- if (coordDimInfo.type === 'ordinal' && baseCategoryDimIndex == null) {
- baseCategoryDimIndex = coordDimIdx;
- categoryWayValueDimStart = getDataDimCountOnCoordDim(coordDimInfo);
- }
- encode[coordDimInfo.name] = [];
- });
- var datasetRecord = datasetMap.get(key) || datasetMap.set(key, {
- categoryWayDim: categoryWayValueDimStart,
- valueWayDim: 0
- }); // TODO
- // Auto detect first time axis and do arrangement.
- each(coordDimensions, function (coordDimInfo, coordDimIdx) {
- var coordDimName = coordDimInfo.name;
- var count = getDataDimCountOnCoordDim(coordDimInfo); // In value way.
- if (baseCategoryDimIndex == null) {
- var start = datasetRecord.valueWayDim;
- pushDim(encode[coordDimName], start, count);
- pushDim(encodeSeriesName, start, count);
- datasetRecord.valueWayDim += count; // ??? TODO give a better default series name rule?
- // especially when encode x y specified.
- // consider: when multiple series share one dimension
- // category axis, series name should better use
- // the other dimension name. On the other hand, use
- // both dimensions name.
- } // In category way, the first category axis.
- else if (baseCategoryDimIndex === coordDimIdx) {
- pushDim(encode[coordDimName], 0, count);
- pushDim(encodeItemName, 0, count);
- } // In category way, the other axis.
- else {
- var start = datasetRecord.categoryWayDim;
- pushDim(encode[coordDimName], start, count);
- pushDim(encodeSeriesName, start, count);
- datasetRecord.categoryWayDim += count;
- }
- });
- function pushDim(dimIdxArr, idxFrom, idxCount) {
- for (var i = 0; i < idxCount; i++) {
- dimIdxArr.push(idxFrom + i);
- }
- }
- function getDataDimCountOnCoordDim(coordDimInfo) {
- var dimsDef = coordDimInfo.dimsDef;
- return dimsDef ? dimsDef.length : 1;
- }
- encodeItemName.length && (encode.itemName = encodeItemName);
- encodeSeriesName.length && (encode.seriesName = encodeSeriesName);
- return encode;
- }
- /**
- * Work for data like [{name: ..., value: ...}, ...].
- *
- * @return encode Never be `null/undefined`.
- */
- export function makeSeriesEncodeForNameBased(seriesModel, source, dimCount) {
- var encode = {};
- var datasetModel = querySeriesUpstreamDatasetModel(seriesModel); // Currently only make default when using dataset, util more reqirements occur.
- if (!datasetModel) {
- return encode;
- }
- var sourceFormat = source.sourceFormat;
- var dimensionsDefine = source.dimensionsDefine;
- var potentialNameDimIndex;
- if (sourceFormat === SOURCE_FORMAT_OBJECT_ROWS || sourceFormat === SOURCE_FORMAT_KEYED_COLUMNS) {
- each(dimensionsDefine, function (dim, idx) {
- if ((isObject(dim) ? dim.name : dim) === 'name') {
- potentialNameDimIndex = idx;
- }
- });
- }
- var idxResult = function () {
- var idxRes0 = {};
- var idxRes1 = {};
- var guessRecords = []; // 5 is an experience value.
- for (var i = 0, len = Math.min(5, dimCount); i < len; i++) {
- var guessResult = doGuessOrdinal(source.data, sourceFormat, source.seriesLayoutBy, dimensionsDefine, source.startIndex, i);
- guessRecords.push(guessResult);
- var isPureNumber = guessResult === BE_ORDINAL.Not; // [Strategy of idxRes0]: find the first BE_ORDINAL.Not as the value dim,
- // and then find a name dim with the priority:
- // "BE_ORDINAL.Might|BE_ORDINAL.Must" > "other dim" > "the value dim itself".
- if (isPureNumber && idxRes0.v == null && i !== potentialNameDimIndex) {
- idxRes0.v = i;
- }
- if (idxRes0.n == null || idxRes0.n === idxRes0.v || !isPureNumber && guessRecords[idxRes0.n] === BE_ORDINAL.Not) {
- idxRes0.n = i;
- }
- if (fulfilled(idxRes0) && guessRecords[idxRes0.n] !== BE_ORDINAL.Not) {
- return idxRes0;
- } // [Strategy of idxRes1]: if idxRes0 not satisfied (that is, no BE_ORDINAL.Not),
- // find the first BE_ORDINAL.Might as the value dim,
- // and then find a name dim with the priority:
- // "other dim" > "the value dim itself".
- // That is for backward compat: number-like (e.g., `'3'`, `'55'`) can be
- // treated as number.
- if (!isPureNumber) {
- if (guessResult === BE_ORDINAL.Might && idxRes1.v == null && i !== potentialNameDimIndex) {
- idxRes1.v = i;
- }
- if (idxRes1.n == null || idxRes1.n === idxRes1.v) {
- idxRes1.n = i;
- }
- }
- }
- function fulfilled(idxResult) {
- return idxResult.v != null && idxResult.n != null;
- }
- return fulfilled(idxRes0) ? idxRes0 : fulfilled(idxRes1) ? idxRes1 : null;
- }();
- if (idxResult) {
- encode.value = [idxResult.v]; // `potentialNameDimIndex` has highest priority.
- var nameDimIndex = potentialNameDimIndex != null ? potentialNameDimIndex : idxResult.n; // By default, label uses itemName in charts.
- // So we don't set encodeLabel here.
- encode.itemName = [nameDimIndex];
- encode.seriesName = [nameDimIndex];
- }
- return encode;
- }
- /**
- * @return If return null/undefined, indicate that should not use datasetModel.
- */
- export function querySeriesUpstreamDatasetModel(seriesModel) {
- // Caution: consider the scenario:
- // A dataset is declared and a series is not expected to use the dataset,
- // and at the beginning `setOption({series: { noData })` (just prepare other
- // option but no data), then `setOption({series: {data: [...]}); In this case,
- // the user should set an empty array to avoid that dataset is used by default.
- var thisData = seriesModel.get('data', true);
- if (!thisData) {
- return queryReferringComponents(seriesModel.ecModel, 'dataset', {
- index: seriesModel.get('datasetIndex', true),
- id: seriesModel.get('datasetId', true)
- }, SINGLE_REFERRING).models[0];
- }
- }
- /**
- * @return Always return an array event empty.
- */
- export function queryDatasetUpstreamDatasetModels(datasetModel) {
- // Only these attributes declared, we by defualt reference to `datasetIndex: 0`.
- // Otherwise, no reference.
- if (!datasetModel.get('transform', true) && !datasetModel.get('fromTransformResult', true)) {
- return [];
- }
- return queryReferringComponents(datasetModel.ecModel, 'dataset', {
- index: datasetModel.get('fromDatasetIndex', true),
- id: datasetModel.get('fromDatasetId', true)
- }, SINGLE_REFERRING).models;
- }
- /**
- * The rule should not be complex, otherwise user might not
- * be able to known where the data is wrong.
- * The code is ugly, but how to make it neat?
- */
- export function guessOrdinal(source, dimIndex) {
- return doGuessOrdinal(source.data, source.sourceFormat, source.seriesLayoutBy, source.dimensionsDefine, source.startIndex, dimIndex);
- } // dimIndex may be overflow source data.
- // return {BE_ORDINAL}
- function doGuessOrdinal(data, sourceFormat, seriesLayoutBy, dimensionsDefine, startIndex, dimIndex) {
- var result; // Experience value.
- var maxLoop = 5;
- if (isTypedArray(data)) {
- return BE_ORDINAL.Not;
- } // When sourceType is 'objectRows' or 'keyedColumns', dimensionsDefine
- // always exists in source.
- var dimName;
- var dimType;
- if (dimensionsDefine) {
- var dimDefItem = dimensionsDefine[dimIndex];
- if (isObject(dimDefItem)) {
- dimName = dimDefItem.name;
- dimType = dimDefItem.type;
- } else if (isString(dimDefItem)) {
- dimName = dimDefItem;
- }
- }
- if (dimType != null) {
- return dimType === 'ordinal' ? BE_ORDINAL.Must : BE_ORDINAL.Not;
- }
- if (sourceFormat === SOURCE_FORMAT_ARRAY_ROWS) {
- var dataArrayRows = data;
- if (seriesLayoutBy === SERIES_LAYOUT_BY_ROW) {
- var sample = dataArrayRows[dimIndex];
- for (var i = 0; i < (sample || []).length && i < maxLoop; i++) {
- if ((result = detectValue(sample[startIndex + i])) != null) {
- return result;
- }
- }
- } else {
- for (var i = 0; i < dataArrayRows.length && i < maxLoop; i++) {
- var row = dataArrayRows[startIndex + i];
- if (row && (result = detectValue(row[dimIndex])) != null) {
- return result;
- }
- }
- }
- } else if (sourceFormat === SOURCE_FORMAT_OBJECT_ROWS) {
- var dataObjectRows = data;
- if (!dimName) {
- return BE_ORDINAL.Not;
- }
- for (var i = 0; i < dataObjectRows.length && i < maxLoop; i++) {
- var item = dataObjectRows[i];
- if (item && (result = detectValue(item[dimName])) != null) {
- return result;
- }
- }
- } else if (sourceFormat === SOURCE_FORMAT_KEYED_COLUMNS) {
- var dataKeyedColumns = data;
- if (!dimName) {
- return BE_ORDINAL.Not;
- }
- var sample = dataKeyedColumns[dimName];
- if (!sample || isTypedArray(sample)) {
- return BE_ORDINAL.Not;
- }
- for (var i = 0; i < sample.length && i < maxLoop; i++) {
- if ((result = detectValue(sample[i])) != null) {
- return result;
- }
- }
- } else if (sourceFormat === SOURCE_FORMAT_ORIGINAL) {
- var dataOriginal = data;
- for (var i = 0; i < dataOriginal.length && i < maxLoop; i++) {
- var item = dataOriginal[i];
- var val = getDataItemValue(item);
- if (!isArray(val)) {
- return BE_ORDINAL.Not;
- }
- if ((result = detectValue(val[dimIndex])) != null) {
- return result;
- }
- }
- }
- function detectValue(val) {
- var beStr = isString(val); // Consider usage convenience, '1', '2' will be treated as "number".
- // `isFinit('')` get `true`.
- if (val != null && isFinite(val) && val !== '') {
- return beStr ? BE_ORDINAL.Might : BE_ORDINAL.Not;
- } else if (beStr && val !== '-') {
- return BE_ORDINAL.Must;
- }
- }
- return BE_ORDINAL.Not;
- }
|