123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627 |
- // BigInt, a suite of routines for performing multiple-precision arithmetic in
- // JavaScript.
- //
- // Copyright 1998-2005 David Shapiro.
- //
- // You may use, re-use, abuse,
- // copy, and modify this code to your liking, but please keep this header.
- // Thanks!
- //
- // Dave Shapiro
- // dave@ohdave.com
- // IMPORTANT THING: Be sure to set maxDigits according to your precision
- // needs. Use the setMaxDigits() function to do this. See comments below.
- //
- // Tweaked by Ian Bunning
- // Alterations:
- // Fix bug in function biFromHex(s) to allow
- // parsing of strings of length != 0 (mod 4)
- // Changes made by Dave Shapiro as of 12/30/2004:
- //
- // The BigInt() constructor doesn't take a string anymore. If you want to
- // create a BigInt from a string, use biFromDecimal() for base-10
- // representations, biFromHex() for base-16 representations, or
- // biFromString() for base-2-to-36 representations.
- //
- // biFromArray() has been removed. Use biCopy() instead, passing a BigInt
- // instead of an array.
- //
- // The BigInt() constructor now only constructs a zeroed-out array.
- // Alternatively, if you pass <true>, it won't construct any array. See the
- // biCopy() method for an example of this.
- //
- // Be sure to set maxDigits depending on your precision needs. The default
- // zeroed-out array ZERO_ARRAY is constructed inside the setMaxDigits()
- // function. So use this function to set the variable. DON'T JUST SET THE
- // VALUE. USE THE FUNCTION.
- //
- // ZERO_ARRAY exists to hopefully speed up construction of BigInts(). By
- // precalculating the zero array, we can just use slice(0) to make copies of
- // it. Presumably this calls faster native code, as opposed to setting the
- // elements one at a time. I have not done any timing tests to verify this
- // claim.
- // Max number = 10^16 - 2 = 9999999999999998;
- // 2^53 = 9007199254740992;
- var biRadixBase = 2;
- var biRadixBits = 16;
- var bitsPerDigit = biRadixBits;
- var biRadix = 1 << 16; // = 2^16 = 65536
- var biHalfRadix = biRadix >>> 1;
- var biRadixSquared = biRadix * biRadix;
- var maxDigitVal = biRadix - 1;
- var maxInteger = 9999999999999998;
- // maxDigits:
- // Change this to accommodate your largest number size. Use setMaxDigits()
- // to change it!
- //
- // In general, if you're working with numbers of size N bits, you'll need 2*N
- // bits of storage. Each digit holds 16 bits. So, a 1024-bit key will need
- //
- // 1024 * 2 / 16 = 128 digits of storage.
- //
- var maxDigits;
- var ZERO_ARRAY;
- var bigZero, bigOne;
- function setMaxDigits(value)
- {
- maxDigits = value;
- ZERO_ARRAY = new Array(maxDigits);
- for (var iza = 0; iza < ZERO_ARRAY.length; iza++) ZERO_ARRAY[iza] = 0;
- bigZero = new BigInt();
- bigOne = new BigInt();
- bigOne.digits[0] = 1;
- }
- setMaxDigits(20);
- // The maximum number of digits in base 10 you can convert to an
- // integer without JavaScript throwing up on you.
- var dpl10 = 15;
- // lr10 = 10 ^ dpl10
- var lr10 = biFromNumber(1000000000000000);
- function BigInt(flag)
- {
- if (typeof flag == "boolean" && flag == true) {
- this.digits = null;
- }
- else {
- this.digits = ZERO_ARRAY.slice(0);
- }
- this.isNeg = false;
- }
- function biFromDecimal(s)
- {
- var isNeg = s.charAt(0) == '-';
- var i = isNeg ? 1 : 0;
- var result;
- // Skip leading zeros.
- while (i < s.length && s.charAt(i) == '0') ++i;
- if (i == s.length) {
- result = new BigInt();
- }
- else {
- var digitCount = s.length - i;
- var fgl = digitCount % dpl10;
- if (fgl == 0) fgl = dpl10;
- result = biFromNumber(Number(s.substr(i, fgl)));
- i += fgl;
- while (i < s.length) {
- result = biAdd(biMultiply(result, lr10),
- biFromNumber(Number(s.substr(i, dpl10))));
- i += dpl10;
- }
- result.isNeg = isNeg;
- }
- return result;
- }
- function biCopy(bi)
- {
- var result = new BigInt(true);
- result.digits = bi.digits.slice(0);
- result.isNeg = bi.isNeg;
- return result;
- }
- function biFromNumber(i)
- {
- var result = new BigInt();
- result.isNeg = i < 0;
- i = Math.abs(i);
- var j = 0;
- while (i > 0) {
- result.digits[j++] = i & maxDigitVal;
- i = Math.floor(i / biRadix);
- }
- return result;
- }
- function reverseStr(s)
- {
- var result = "";
- for (var i = s.length - 1; i > -1; --i) {
- result += s.charAt(i);
- }
- return result;
- }
- var hexatrigesimalToChar = new Array(
- '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
- 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
- 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
- 'u', 'v', 'w', 'x', 'y', 'z'
- );
- function biToString(x, radix)
- // 2 <= radix <= 36
- {
- var b = new BigInt();
- b.digits[0] = radix;
- var qr = biDivideModulo(x, b);
- var result = hexatrigesimalToChar[qr[1].digits[0]];
- while (biCompare(qr[0], bigZero) == 1) {
- qr = biDivideModulo(qr[0], b);
- digit = qr[1].digits[0];
- result += hexatrigesimalToChar[qr[1].digits[0]];
- }
- return (x.isNeg ? "-" : "") + reverseStr(result);
- }
- function biToDecimal(x)
- {
- var b = new BigInt();
- b.digits[0] = 10;
- var qr = biDivideModulo(x, b);
- var result = String(qr[1].digits[0]);
- while (biCompare(qr[0], bigZero) == 1) {
- qr = biDivideModulo(qr[0], b);
- result += String(qr[1].digits[0]);
- }
- return (x.isNeg ? "-" : "") + reverseStr(result);
- }
- var hexToChar = new Array('0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
- 'a', 'b', 'c', 'd', 'e', 'f');
- function digitToHex(n)
- {
- var mask = 0xf;
- var result = "";
- for (i = 0; i < 4; ++i) {
- result += hexToChar[n & mask];
- n >>>= 4;
- }
- return reverseStr(result);
- }
- function biToHex(x)
- {
- var result = "";
- var n = biHighIndex(x);
- for (var i = biHighIndex(x); i > -1; --i) {
- result += digitToHex(x.digits[i]);
- }
- return result;
- }
- function charToHex(c)
- {
- var ZERO = 48;
- var NINE = ZERO + 9;
- var littleA = 97;
- var littleZ = littleA + 25;
- var bigA = 65;
- var bigZ = 65 + 25;
- var result;
- if (c >= ZERO && c <= NINE) {
- result = c - ZERO;
- } else if (c >= bigA && c <= bigZ) {
- result = 10 + c - bigA;
- } else if (c >= littleA && c <= littleZ) {
- result = 10 + c - littleA;
- } else {
- result = 0;
- }
- return result;
- }
- function hexToDigit(s)
- {
- var result = 0;
- var sl = Math.min(s.length, 4);
- for (var i = 0; i < sl; ++i) {
- result <<= 4;
- result |= charToHex(s.charCodeAt(i))
- }
- return result;
- }
- function biFromHex(s)
- {
- var result = new BigInt();
- var sl = s.length;
- for (var i = sl, j = 0; i > 0; i -= 4, ++j) {
- result.digits[j] = hexToDigit(s.substr(Math.max(i - 4, 0), Math.min(i, 4)));
- }
- return result;
- }
- function biFromString(s, radix)
- {
- var isNeg = s.charAt(0) == '-';
- var istop = isNeg ? 1 : 0;
- var result = new BigInt();
- var place = new BigInt();
- place.digits[0] = 1; // radix^0
- for (var i = s.length - 1; i >= istop; i--) {
- var c = s.charCodeAt(i);
- var digit = charToHex(c);
- var biDigit = biMultiplyDigit(place, digit);
- result = biAdd(result, biDigit);
- place = biMultiplyDigit(place, radix);
- }
- result.isNeg = isNeg;
- return result;
- }
- function biDump(b)
- {
- return (b.isNeg ? "-" : "") + b.digits.join(" ");
- }
- function biAdd(x, y)
- {
- var result;
- if (x.isNeg != y.isNeg) {
- y.isNeg = !y.isNeg;
- result = biSubtract(x, y);
- y.isNeg = !y.isNeg;
- }
- else {
- result = new BigInt();
- var c = 0;
- var n;
- for (var i = 0; i < x.digits.length; ++i) {
- n = x.digits[i] + y.digits[i] + c;
- result.digits[i] = n % biRadix;
- c = Number(n >= biRadix);
- }
- result.isNeg = x.isNeg;
- }
- return result;
- }
- function biSubtract(x, y)
- {
- var result;
- if (x.isNeg != y.isNeg) {
- y.isNeg = !y.isNeg;
- result = biAdd(x, y);
- y.isNeg = !y.isNeg;
- } else {
- result = new BigInt();
- var n, c;
- c = 0;
- for (var i = 0; i < x.digits.length; ++i) {
- n = x.digits[i] - y.digits[i] + c;
- result.digits[i] = n % biRadix;
- // Stupid non-conforming modulus operation.
- if (result.digits[i] < 0) result.digits[i] += biRadix;
- c = 0 - Number(n < 0);
- }
- // Fix up the negative sign, if any.
- if (c == -1) {
- c = 0;
- for (var i = 0; i < x.digits.length; ++i) {
- n = 0 - result.digits[i] + c;
- result.digits[i] = n % biRadix;
- // Stupid non-conforming modulus operation.
- if (result.digits[i] < 0) result.digits[i] += biRadix;
- c = 0 - Number(n < 0);
- }
- // Result is opposite sign of arguments.
- result.isNeg = !x.isNeg;
- } else {
- // Result is same sign.
- result.isNeg = x.isNeg;
- }
- }
- return result;
- }
- function biHighIndex(x)
- {
- var result = x.digits.length - 1;
- while (result > 0 && x.digits[result] == 0) --result;
- return result;
- }
- function biNumBits(x)
- {
- var n = biHighIndex(x);
- var d = x.digits[n];
- var m = (n + 1) * bitsPerDigit;
- var result;
- for (result = m; result > m - bitsPerDigit; --result) {
- if ((d & 0x8000) != 0) break;
- d <<= 1;
- }
- return result;
- }
- function biMultiply(x, y)
- {
- var result = new BigInt();
- var c;
- var n = biHighIndex(x);
- var t = biHighIndex(y);
- var u, uv, k;
- for (var i = 0; i <= t; ++i) {
- c = 0;
- k = i;
- for (j = 0; j <= n; ++j, ++k) {
- uv = result.digits[k] + x.digits[j] * y.digits[i] + c;
- result.digits[k] = uv & maxDigitVal;
- c = uv >>> biRadixBits;
- //c = Math.floor(uv / biRadix);
- }
- result.digits[i + n + 1] = c;
- }
- // Someone give me a logical xor, please.
- result.isNeg = x.isNeg != y.isNeg;
- return result;
- }
- function biMultiplyDigit(x, y)
- {
- var n, c, uv;
- result = new BigInt();
- n = biHighIndex(x);
- c = 0;
- for (var j = 0; j <= n; ++j) {
- uv = result.digits[j] + x.digits[j] * y + c;
- result.digits[j] = uv & maxDigitVal;
- c = uv >>> biRadixBits;
- //c = Math.floor(uv / biRadix);
- }
- result.digits[1 + n] = c;
- return result;
- }
- function arrayCopy(src, srcStart, dest, destStart, n)
- {
- var m = Math.min(srcStart + n, src.length);
- for (var i = srcStart, j = destStart; i < m; ++i, ++j) {
- dest[j] = src[i];
- }
- }
- var highBitMasks = new Array(0x0000, 0x8000, 0xC000, 0xE000, 0xF000, 0xF800,
- 0xFC00, 0xFE00, 0xFF00, 0xFF80, 0xFFC0, 0xFFE0,
- 0xFFF0, 0xFFF8, 0xFFFC, 0xFFFE, 0xFFFF);
- function biShiftLeft(x, n)
- {
- var digitCount = Math.floor(n / bitsPerDigit);
- var result = new BigInt();
- arrayCopy(x.digits, 0, result.digits, digitCount,
- result.digits.length - digitCount);
- var bits = n % bitsPerDigit;
- var rightBits = bitsPerDigit - bits;
- for (var i = result.digits.length - 1, i1 = i - 1; i > 0; --i, --i1) {
- result.digits[i] = ((result.digits[i] << bits) & maxDigitVal) |
- ((result.digits[i1] & highBitMasks[bits]) >>>
- (rightBits));
- }
- result.digits[0] = ((result.digits[i] << bits) & maxDigitVal);
- result.isNeg = x.isNeg;
- return result;
- }
- var lowBitMasks = new Array(0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F,
- 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF,
- 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF);
- function biShiftRight(x, n)
- {
- var digitCount = Math.floor(n / bitsPerDigit);
- var result = new BigInt();
- arrayCopy(x.digits, digitCount, result.digits, 0,
- x.digits.length - digitCount);
- var bits = n % bitsPerDigit;
- var leftBits = bitsPerDigit - bits;
- for (var i = 0, i1 = i + 1; i < result.digits.length - 1; ++i, ++i1) {
- result.digits[i] = (result.digits[i] >>> bits) |
- ((result.digits[i1] & lowBitMasks[bits]) << leftBits);
- }
- result.digits[result.digits.length - 1] >>>= bits;
- result.isNeg = x.isNeg;
- return result;
- }
- function biMultiplyByRadixPower(x, n)
- {
- var result = new BigInt();
- arrayCopy(x.digits, 0, result.digits, n, result.digits.length - n);
- return result;
- }
- function biDivideByRadixPower(x, n)
- {
- var result = new BigInt();
- arrayCopy(x.digits, n, result.digits, 0, result.digits.length - n);
- return result;
- }
- function biModuloByRadixPower(x, n)
- {
- var result = new BigInt();
- arrayCopy(x.digits, 0, result.digits, 0, n);
- return result;
- }
- function biCompare(x, y)
- {
- if (x.isNeg != y.isNeg) {
- return 1 - 2 * Number(x.isNeg);
- }
- for (var i = x.digits.length - 1; i >= 0; --i) {
- if (x.digits[i] != y.digits[i]) {
- if (x.isNeg) {
- return 1 - 2 * Number(x.digits[i] > y.digits[i]);
- } else {
- return 1 - 2 * Number(x.digits[i] < y.digits[i]);
- }
- }
- }
- return 0;
- }
- function biDivideModulo(x, y)
- {
- var nb = biNumBits(x);
- var tb = biNumBits(y);
- var origYIsNeg = y.isNeg;
- var q, r;
- if (nb < tb) {
- // |x| < |y|
- if (x.isNeg) {
- q = biCopy(bigOne);
- q.isNeg = !y.isNeg;
- x.isNeg = false;
- y.isNeg = false;
- r = biSubtract(y, x);
- // Restore signs, 'cause they're references.
- x.isNeg = true;
- y.isNeg = origYIsNeg;
- } else {
- q = new BigInt();
- r = biCopy(x);
- }
- return new Array(q, r);
- }
- q = new BigInt();
- r = x;
- // Normalize Y.
- var t = Math.ceil(tb / bitsPerDigit) - 1;
- var lambda = 0;
- while (y.digits[t] < biHalfRadix) {
- y = biShiftLeft(y, 1);
- ++lambda;
- ++tb;
- t = Math.ceil(tb / bitsPerDigit) - 1;
- }
- // Shift r over to keep the quotient constant. We'll shift the
- // remainder back at the end.
- r = biShiftLeft(r, lambda);
- nb += lambda; // Update the bit count for x.
- var n = Math.ceil(nb / bitsPerDigit) - 1;
- var b = biMultiplyByRadixPower(y, n - t);
- while (biCompare(r, b) != -1) {
- ++q.digits[n - t];
- r = biSubtract(r, b);
- }
- for (var i = n; i > t; --i) {
- var ri = (i >= r.digits.length) ? 0 : r.digits[i];
- var ri1 = (i - 1 >= r.digits.length) ? 0 : r.digits[i - 1];
- var ri2 = (i - 2 >= r.digits.length) ? 0 : r.digits[i - 2];
- var yt = (t >= y.digits.length) ? 0 : y.digits[t];
- var yt1 = (t - 1 >= y.digits.length) ? 0 : y.digits[t - 1];
- if (ri == yt) {
- q.digits[i - t - 1] = maxDigitVal;
- } else {
- q.digits[i - t - 1] = Math.floor((ri * biRadix + ri1) / yt);
- }
- var c1 = q.digits[i - t - 1] * ((yt * biRadix) + yt1);
- var c2 = (ri * biRadixSquared) + ((ri1 * biRadix) + ri2);
- while (c1 > c2) {
- --q.digits[i - t - 1];
- c1 = q.digits[i - t - 1] * ((yt * biRadix) | yt1);
- c2 = (ri * biRadix * biRadix) + ((ri1 * biRadix) + ri2);
- }
- b = biMultiplyByRadixPower(y, i - t - 1);
- r = biSubtract(r, biMultiplyDigit(b, q.digits[i - t - 1]));
- if (r.isNeg) {
- r = biAdd(r, b);
- --q.digits[i - t - 1];
- }
- }
- r = biShiftRight(r, lambda);
- // Fiddle with the signs and stuff to make sure that 0 <= r < y.
- q.isNeg = x.isNeg != origYIsNeg;
- if (x.isNeg) {
- if (origYIsNeg) {
- q = biAdd(q, bigOne);
- } else {
- q = biSubtract(q, bigOne);
- }
- y = biShiftRight(y, lambda);
- r = biSubtract(y, r);
- }
- // Check for the unbelievably stupid degenerate case of r == -0.
- if (r.digits[0] == 0 && biHighIndex(r) == 0) r.isNeg = false;
- return new Array(q, r);
- }
- function biDivide(x, y)
- {
- return biDivideModulo(x, y)[0];
- }
- function biModulo(x, y)
- {
- return biDivideModulo(x, y)[1];
- }
- function biMultiplyMod(x, y, m)
- {
- return biModulo(biMultiply(x, y), m);
- }
- function biPow(x, y)
- {
- var result = bigOne;
- var a = x;
- while (true) {
- if ((y & 1) != 0) result = biMultiply(result, a);
- y >>= 1;
- if (y == 0) break;
- a = biMultiply(a, a);
- }
- return result;
- }
- function biPowMod(x, y, m)
- {
- var result = bigOne;
- var a = x;
- var k = y;
- while (true) {
- if ((k.digits[0] & 1) != 0) result = biMultiplyMod(result, a, m);
- k = biShiftRight(k, 1);
- if (k.digits[0] == 0 && biHighIndex(k) == 0) break;
- a = biMultiplyMod(a, a, m);
- }
- return result;
- }
|