123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "test_precomp.hpp"
- #include "opencv2/ximgproc/sparse_match_interpolator.hpp"
- namespace opencv_test { namespace {
- static string getDataDir()
- {
- return cvtest::TS::ptr()->get_data_path();
- }
- const float FLOW_TAG_FLOAT = 202021.25f;
- Mat readOpticalFlow( const String& path )
- {
- // CV_Assert(sizeof(float) == 4);
- //FIXME: ensure right sizes of int and float - here and in writeOpticalFlow()
- Mat_<Point2f> flow;
- std::ifstream file(path.c_str(), std::ios_base::binary);
- if ( !file.good() )
- return std::move(flow); // no file - return empty matrix
- float tag;
- file.read((char*) &tag, sizeof(float));
- if ( tag != FLOW_TAG_FLOAT )
- return std::move(flow);
- int width, height;
- file.read((char*) &width, 4);
- file.read((char*) &height, 4);
- flow.create(height, width);
- for ( int i = 0; i < flow.rows; ++i )
- {
- for ( int j = 0; j < flow.cols; ++j )
- {
- Point2f u;
- file.read((char*) &u.x, sizeof(float));
- file.read((char*) &u.y, sizeof(float));
- if ( !file.good() )
- {
- flow.release();
- return std::move(flow);
- }
- flow(i, j) = u;
- }
- }
- file.close();
- return std::move(flow);
- }
- CV_ENUM(GuideTypes, CV_8UC1, CV_8UC3)
- typedef tuple<Size, GuideTypes> InterpolatorParams;
- typedef TestWithParam<InterpolatorParams> InterpolatorTest;
- TEST(InterpolatorTest, ReferenceAccuracy)
- {
- double MAX_DIF = 1.0;
- double MAX_MEAN_DIF = 1.0 / 256.0;
- string dir = getDataDir() + "cv/sparse_match_interpolator";
- Mat src = imread(getDataDir() + "cv/optflow/RubberWhale1.png",IMREAD_COLOR);
- ASSERT_FALSE(src.empty());
- Mat ref_flow = readOpticalFlow(dir + "/RubberWhale_reference_result.flo");
- ASSERT_FALSE(ref_flow.empty());
- std::ifstream file((dir + "/RubberWhale_sparse_matches.txt").c_str());
- float from_x,from_y,to_x,to_y;
- vector<Point2f> from_points;
- vector<Point2f> to_points;
- while(file >> from_x >> from_y >> to_x >> to_y)
- {
- from_points.push_back(Point2f(from_x,from_y));
- to_points.push_back(Point2f(to_x,to_y));
- }
- Mat res_flow;
- Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator();
- interpolator->setK(128);
- interpolator->setSigma(0.05f);
- interpolator->setUsePostProcessing(true);
- interpolator->setFGSLambda(500.0f);
- interpolator->setFGSSigma(1.5f);
- interpolator->interpolate(src,from_points,Mat(),to_points,res_flow);
- EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF);
- EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1) , MAX_MEAN_DIF*res_flow.total());
- Mat from_point_mat(from_points);
- Mat to_points_mat(to_points);
- interpolator->interpolate(src,from_point_mat,Mat(),to_points_mat,res_flow);
- EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF);
- EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1) , MAX_MEAN_DIF*res_flow.total());
- }
- TEST(InterpolatorTest, RICReferenceAccuracy)
- {
- double MAX_DIF = 6.0;
- double MAX_MEAN_DIF = 60.0 / 256.0;
- string dir = getDataDir() + "cv/sparse_match_interpolator";
- Mat src = imread(getDataDir() + "cv/optflow/RubberWhale1.png", IMREAD_COLOR);
- ASSERT_FALSE(src.empty());
- Mat ref_flow = readOpticalFlow(dir + "/RubberWhale_reference_result.flo");
- ASSERT_FALSE(ref_flow.empty());
- Mat src1 = imread(getDataDir() + "cv/optflow/RubberWhale2.png", IMREAD_COLOR);
- ASSERT_FALSE(src.empty());
- std::ifstream file((dir + "/RubberWhale_sparse_matches.txt").c_str());
- float from_x, from_y, to_x, to_y;
- vector<Point2f> from_points;
- vector<Point2f> to_points;
- while (file >> from_x >> from_y >> to_x >> to_y)
- {
- from_points.push_back(Point2f(from_x, from_y));
- to_points.push_back(Point2f(to_x, to_y));
- }
- Mat res_flow;
- Ptr<RICInterpolator> interpolator = createRICInterpolator();
- interpolator->setK(32);
- interpolator->setSuperpixelSize(15);
- interpolator->setSuperpixelNNCnt(150);
- interpolator->setSuperpixelRuler(15.f);
- interpolator->setSuperpixelMode(ximgproc::SLIC);
- interpolator->setAlpha(0.7f);
- interpolator->setModelIter(4);
- interpolator->setRefineModels(true);
- interpolator->setMaxFlow(250.f);
- interpolator->setUseVariationalRefinement(true);
- interpolator->setUseGlobalSmootherFilter(true);
- interpolator->setFGSLambda(500.f);
- interpolator->setFGSSigma(1.5f);
- interpolator->interpolate(src, from_points, src1, to_points, res_flow);
- EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF);
- EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1), MAX_MEAN_DIF*res_flow.total());
- Mat from_point_mat(from_points);
- Mat to_points_mat(to_points);
- interpolator->interpolate(src, from_point_mat, src1, to_points_mat, res_flow);
- EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF);
- EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1) , MAX_MEAN_DIF*res_flow.total());
- }
- TEST_P(InterpolatorTest, MultiThreadReproducibility)
- {
- if (cv::getNumberOfCPUs() == 1)
- return;
- double MAX_DIF = 1.0;
- double MAX_MEAN_DIF = 1.0 / 256.0;
- int loopsCount = 2;
- RNG rng(0);
- InterpolatorParams params = GetParam();
- Size size = get<0>(params);
- int guideType = get<1>(params);
- Mat from(size, guideType);
- randu(from, 0, 255);
- int num_matches = rng.uniform(5,SHRT_MAX-1);
- vector<Point2f> from_points;
- vector<Point2f> to_points;
- for(int i=0;i<num_matches;i++)
- {
- from_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f)));
- to_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f)));
- }
- int nThreads = cv::getNumThreads();
- if (nThreads == 1)
- throw SkipTestException("Single thread environment");
- for (int iter = 0; iter <= loopsCount; iter++)
- {
- int K = rng.uniform(4,512);
- float sigma = rng.uniform(0.01f,0.5f);
- float FGSlambda = rng.uniform(100.0f, 10000.0f);
- float FGSsigma = rng.uniform(0.5f, 100.0f);
- Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator();
- interpolator->setK(K);
- interpolator->setSigma(sigma);
- interpolator->setUsePostProcessing(true);
- interpolator->setFGSLambda(FGSlambda);
- interpolator->setFGSSigma(FGSsigma);
- cv::setNumThreads(nThreads);
- Mat resMultiThread;
- interpolator->interpolate(from,from_points,Mat(),to_points,resMultiThread);
- cv::setNumThreads(1);
- Mat resSingleThread;
- interpolator->interpolate(from,from_points,Mat(),to_points,resSingleThread);
- EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
- EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1) , MAX_MEAN_DIF*resMultiThread.total());
- }
- }
- INSTANTIATE_TEST_CASE_P(FullSet,InterpolatorTest, Combine(Values(szODD,szVGA), GuideTypes::all()));
- }} // namespace
|