123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2015, Smart Engines Ltd, all rights reserved.
- // Copyright (C) 2015, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), all rights reserved.
- // Copyright (C) 2015, Dmitry Nikolaev, Simon Karpenko, Michail Aliev, Elena Kuznetsova, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- //----------------------utils---------------------------------------------------
- template <typename T> struct Eps
- {
- static T get() { return 1; }
- };
- template <> struct Eps<float> { static float get() { return float(1e-3); } };
- template <> struct Eps<double> { static double get() { return 1e-6; } };
- template <typename T> struct MinPos
- {
- static T get() { return Eps<T>::get(); }
- };
- template <typename T> struct Max { static T get()
- {
- return saturate_cast<T>(numeric_limits<T>::max()); }
- };
- template <typename T> struct Rand
- {
- static T get(T _min = MinPos<T>::get(), T _max = Max<T>::get())
- {
- RNG& rng = TS::ptr()->get_rng();
- return saturate_cast<T>(rng.uniform(int(std::max(MinPos<T>::get(),
- _min)),
- int(std::min(Max<T>::get(),
- _max))));
- }
- };
- template <> struct Rand <float>
- {
- static float get(float _min = MinPos<float>::get(),
- float _max = Max<float>::get())
- {
- RNG& rng = TS::ptr()->get_rng();
- return rng.uniform(std::max(MinPos<float>::get(), _min),
- std::min(Max<float>::get(), _max));
- }
- };
- template <> struct Rand <double>
- {
- static double get(double _min = MinPos<double>::get(),
- double _max = Max<double>::get())
- {
- RNG& rng = TS::ptr()->get_rng();
- return rng.uniform(std::max(MinPos<double>::get(), _min),
- std::min(Max<double>::get(), _max));
- }
- };
- template <typename T> struct Eq
- {
- static bool get(T a, T b)
- {
- return a < b ? b - a < Eps<T>::get() : a - b < Eps<T>::get();
- }
- };
- //----------------------TestFHT-------------------------------------------------
- class TestFHT
- {
- public:
- TestFHT() : ts(TS::ptr()) {}
- void run_n_tests(int depth,
- int channels,
- int pts_count,
- int n_per_test);
- private:
- template <typename T>
- int run_n_tests_t(int depth,
- int channels,
- int pts_count,
- int n_per_test);
- template <typename T>
- int run_test(int depth,
- int channels,
- int pts_count);
- template <typename T>
- int put_random_points(Mat &img,
- int count,
- vector<Point> &pts);
- int run_func(Mat const&src,
- Mat& fht);
- template <typename T>
- int validate_test_results(Mat const &fht,
- Mat const &src,
- vector<Point> const& pts);
- template <typename T> int validate_sum(Mat const& src, Mat const& fht);
- int validate_point(Mat const& fht, vector<Point> const &pts);
- int validate_line(Mat const& fht, Mat const& src, vector<Point> const& pts);
- private:
- TS *ts;
- };
- template <typename T>
- int TestFHT::put_random_points(Mat &img, int count, vector<Point> &pts)
- {
- int code = TS::OK;
- pts.resize(count, Point(-1, -1));
- for (int i = 0; i < count; ++i)
- {
- RNG rng = ts->get_rng();
- Point const pt(rng.uniform(0, img.cols),
- rng.uniform(0, img.rows));
- pts[i] = pt;
- for (int c = 0; c < img.channels(); ++c)
- {
- T color = Rand<T>::get(MinPos<T>::get(),
- T(Max<T>::get() / count));
- T *img_line = (T*)(img.data + img.step * pt.y);
- img_line[pt.x * img.channels() + c] = color;
- }
- }
- return code;
- }
- template <typename T>
- int TestFHT::validate_sum(Mat const& src, Mat const& fht)
- {
- int const channels = src.channels();
- if (fht.channels() != channels)
- return TS::FAIL_BAD_ARG_CHECK;
- vector<Mat> src_channels(channels);
- split(src, src_channels);
- vector<Mat> fht_channels(channels);
- split(fht, fht_channels);
- for (int c = 0; c < channels; ++c)
- {
- T const src_sum = saturate_cast<T>(sum(src_channels[c]).val[0]);
- for (int y = 0; y < fht.rows; ++y)
- {
- T const fht_sum = saturate_cast<T>(sum(fht_channels[c].row(y)).val[0]);
- if (!Eq<T>::get(src_sum, fht_sum))
- {
- ts->printf(TS::LOG,
- "The sum of column #%d of channel #%d of the fast "
- "hough transform result and the sum of source image"
- " mismatch (=%g, should be =%g)\n",
- y, c, (float)fht_sum, (float)src_sum);
- return TS::FAIL_BAD_ACCURACY;
- }
- }
- }
- return TS::OK;
- }
- int TestFHT::validate_point(Mat const& fht,
- vector<Point> const &pts)
- {
- if (pts.empty())
- return TS::OK;
- for (size_t i = 1; i < pts.size(); ++i)
- {
- if (pts[0] != pts[i])
- return TS::OK;
- }
- int const channels = fht.channels();
- vector<Mat> fht_channels(channels);
- split(fht, fht_channels);
- for (int c = 0; c < channels; ++c)
- {
- for (int y = 0; y < fht.rows; ++y)
- {
- int cnt = countNonZero(fht_channels[c].row(y));
- if (cnt != 1)
- {
- ts->printf(TS::LOG,
- "The incorrect count of non-zero values in column "
- "#%d, channel #%d of FastHoughTransform result "
- "image (=%d, should be %d)\n",
- y, c, cnt, 1);
- return TS::FAIL_BAD_ACCURACY;
- }
- }
- }
- return TS::OK;
- }
- static const double MAX_LDIST = 2.0;
- int TestFHT::validate_line(Mat const& fht,
- Mat const& src,
- vector<Point> const& pts)
- {
- size_t const size = (int)pts.size();
- if (size < 2)
- return TS::OK;
- size_t first_pt_i = 0, second_pt_i = 1;
- for (size_t i = first_pt_i + 1; i < size; ++i)
- {
- if (pts[i] != pts[first_pt_i])
- {
- second_pt_i = first_pt_i;
- break;
- }
- }
- if (pts[second_pt_i] == pts[first_pt_i])
- return TS::OK;
- for (size_t i = second_pt_i + 1; i < size; ++i)
- {
- if (pts[i] != pts[second_pt_i])
- return TS::OK;
- }
- const Point &f = pts[first_pt_i];
- const Point &s = pts[second_pt_i];
- int const channels = fht.channels();
- vector<Mat> fht_channels(channels);
- split(fht, fht_channels);
- for (int ch = 0; ch < channels; ++ch)
- {
- Point fht_max(-1, -1);
- minMaxLoc(fht_channels[ch], 0, 0, 0, &fht_max);
- Vec4i src_line = HoughPoint2Line(fht_max, src,
- ARO_315_135, HDO_DESKEW, RO_STRICT);
- double const a = src_line[1] - src_line[3];
- double const b = src_line[2] - src_line[0];
- double const c = - (a * src_line[0] + b * src_line[1]);
- double const fd = abs(f.x * a + f.y * b + c) / sqrt(a * a + b * b);
- double const sd = abs(s.x * a + s.y * b + c) / sqrt(a * a + b * b);
- double const dist = std::max(fd, sd);
- if (dist > MAX_LDIST)
- {
- ts->printf(TS::LOG,
- "Failed to detect max line in channels %d (distance "
- "between point and line correspoinding of maximum in "
- "FastHoughTransform space is #%g)\n", ch, dist);
- return TS::FAIL_BAD_ACCURACY;
- }
- }
- return TS::OK;
- }
- template <typename T>
- int TestFHT::validate_test_results(Mat const &fht,
- Mat const &src,
- vector<Point> const& pts)
- {
- int code = validate_sum<T>(src, fht);
- if (code == TS::OK)
- code = validate_point(fht, pts);
- if (code == TS::OK)
- code = validate_line(fht, src, pts);
- return code;
- }
- int TestFHT::run_func(Mat const&src,
- Mat& fht)
- {
- int code = TS::OK;
- FastHoughTransform(src, fht, src.depth());
- return code;
- }
- static Size random_size(int const max_size_log,
- int const elem_size)
- {
- RNG& rng = TS::ptr()->get_rng();
- return randomSize(rng, std::max(1,
- max_size_log - cvRound(log(double(elem_size)))));
- }
- static const int FHT_MAX_SIZE_LOG = 9;
- template <typename T>
- int TestFHT::run_test(int depth,
- int channels,
- int pts_count)
- {
- int code = TS::OK;
- Size size = random_size(FHT_MAX_SIZE_LOG,
- CV_ELEM_SIZE(CV_MAKE_TYPE(depth, channels)));
- Mat src = Mat::zeros(size, CV_MAKETYPE(depth, channels));
- vector<Point> pts;
- code = put_random_points<T>(src, pts_count, pts);
- if (code != TS::OK)
- return code;
- Mat fht;
- code = run_func(src, fht);
- if (code != TS::OK)
- return code;
- code = validate_test_results<T>(fht, src, pts);
- return code;
- }
- void TestFHT::run_n_tests(int depth,
- int channels,
- int pts_count,
- int n)
- {
- try
- {
- int code = TS::OK;
- switch (depth)
- {
- case CV_8U:
- code = run_n_tests_t<uchar>(depth, channels, pts_count, n);
- break;
- case CV_8S:
- code = run_n_tests_t<schar>(depth, channels, pts_count, n);
- break;
- case CV_16U:
- code = run_n_tests_t<ushort>(depth, channels, pts_count, n);
- break;
- case CV_16S:
- code = run_n_tests_t<short>(depth, channels, pts_count, n);
- break;
- case CV_32S:
- code = run_n_tests_t<int>(depth, channels, pts_count, n);
- break;
- case CV_32F:
- code = run_n_tests_t<float>(depth, channels, pts_count, n);
- break;
- case CV_64F:
- code = run_n_tests_t<double>(depth, channels, pts_count, n);
- break;
- default:
- code = TS::FAIL_BAD_ARG_CHECK;
- ts->printf(TS::LOG, "Unknown depth %d\n", depth);
- break;
- }
- if (code != TS::OK)
- throw TS::FailureCode(code);
- }
- catch (const TS::FailureCode& fc)
- {
- std::string errorStr = TS::str_from_code(fc);
- ts->printf(TS::LOG,
- "General failure:\n\t%s (%d)\n", errorStr.c_str(), fc);
- ts->set_failed_test_info(fc);
- }
- catch(...)
- {
- ts->printf(TS::LOG, "Unknown failure\n");
- ts->set_failed_test_info(TS::FAIL_EXCEPTION);
- }
- }
- template <typename T>
- int TestFHT::run_n_tests_t(int depth,
- int channels,
- int pts_count,
- int n)
- {
- int code = TS::OK;
- for (int iTest = 0; iTest < n; ++iTest)
- {
- code = run_test<T>(depth, channels, pts_count);
- if (code != TS::OK)
- {
- ts->printf(TS::LOG, "Test %d failed with code %d\n", iTest, code);
- break;
- }
- }
- return code;
- }
- //----------------------TEST_P--------------------------------------------------
- typedef tuple<int, int, int, int> Depth_Channels_PtsC_nPerTest;
- typedef TestWithParam<Depth_Channels_PtsC_nPerTest> FastHoughTransformTest;
- TEST_P(FastHoughTransformTest, accuracy)
- {
- int const depth = get<0>(GetParam());
- int const channels = get<1>(GetParam());
- int const pts_count = get<2>(GetParam());
- int const n_per_test = get<3>(GetParam());
- TestFHT testFht;
- testFht.run_n_tests(depth, channels, pts_count, n_per_test);
- }
- #define FHT_ALL_DEPTHS CV_8U, CV_16U, CV_32S, CV_32F, CV_64F
- #define FHT_ALL_CHANNELS 1, 3, 4
- INSTANTIATE_TEST_CASE_P(FullSet, FastHoughTransformTest,
- Combine(Values(FHT_ALL_DEPTHS),
- Values(FHT_ALL_CHANNELS),
- Values(1, 2),
- Values(5)));
- #undef FHT_ALL_DEPTHS
- #undef FHT_ALL_CHANNELS
- }} // namespace
|