123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- static string getOpenCVExtraDir()
- {
- return cvtest::TS::ptr()->get_data_path();
- }
- CV_ENUM(SupportedTypes, CV_8UC1, CV_8UC3, CV_32FC1); // reduced set
- CV_ENUM(ModeType, DTF_NC, DTF_IC, DTF_RF)
- typedef tuple<Size, ModeType, SupportedTypes, SupportedTypes> DTParams;
- Mat convertTypeAndSize(Mat src, int dstType, Size dstSize)
- {
- Mat dst;
- CV_Assert(src.channels() == 3);
- int dstChannels = CV_MAT_CN(dstType);
- if (dstChannels == 1)
- {
- cvtColor(src, dst, COLOR_BGR2GRAY);
- }
- else if (dstChannels == 2)
- {
- Mat srcCn[3];
- split(src, srcCn);
- merge(srcCn, 2, dst);
- }
- else if (dstChannels == 3)
- {
- dst = src.clone();
- }
- else if (dstChannels == 4)
- {
- Mat srcCn[4];
- split(src, srcCn);
- srcCn[3] = srcCn[0].clone();
- merge(srcCn, 4, dst);
- }
- dst.convertTo(dst, dstType);
- resize(dst, dst, dstSize, 0, 0, dstType == CV_32FC1 ? INTER_LINEAR : INTER_LINEAR_EXACT);
- return dst;
- }
- TEST(DomainTransformTest, SplatSurfaceAccuracy)
- {
- static int dtModes[] = {DTF_NC, DTF_RF, DTF_IC};
- RNG rnd(0);
- for (int i = 0; i < 15; i++)
- {
- Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024));
- int guideCn = rnd.uniform(1, 4);
- Mat guide(sz, CV_MAKE_TYPE(CV_32F, guideCn));
- randu(guide, 0, 255);
- Scalar surfaceValue;
- int srcCn = rnd.uniform(1, 4);
- rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
- Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);
- double sigma_s = rnd.uniform(1.0, 100.0);
- double sigma_r = rnd.uniform(1.0, 100.0);
- int mode = dtModes[i%3];
- Mat res;
- dtFilter(guide, src, res, sigma_s, sigma_r, mode, 1);
- double normL1 = cvtest::norm(src, res, NORM_L1)/src.total()/src.channels();
- EXPECT_LE(normL1, 1.0/64);
- }
- }
- typedef TestWithParam<DTParams> DomainTransformTest;
- TEST_P(DomainTransformTest, MultiThreadReproducibility)
- {
- if (cv::getNumberOfCPUs() == 1)
- return;
- double MAX_DIF = 1.0;
- double MAX_MEAN_DIF = 1.0 / 256.0;
- int loopsCount = 2;
- RNG rng(0);
- DTParams params = GetParam();
- Size size = get<0>(params);
- int mode = get<1>(params);
- int guideType = get<2>(params);
- int srcType = get<3>(params);
- Mat original = imread(getOpenCVExtraDir() + "cv/edgefilter/statue.png");
- Mat guide = convertTypeAndSize(original, guideType, size);
- Mat src = convertTypeAndSize(original, srcType, size);
- int nThreads = cv::getNumThreads();
- if (nThreads == 1)
- throw SkipTestException("Single thread environment");
- for (int iter = 0; iter <= loopsCount; iter++)
- {
- double ss = rng.uniform(0.0, 100.0);
- double sc = rng.uniform(0.0, 100.0);
- cv::setNumThreads(nThreads);
- Mat resMultithread;
- dtFilter(guide, src, resMultithread, ss, sc, mode);
- cv::setNumThreads(1);
- Mat resSingleThread;
- dtFilter(guide, src, resSingleThread, ss, sc, mode);
- EXPECT_LE(cv::norm(resSingleThread, resMultithread, NORM_INF), MAX_DIF);
- EXPECT_LE(cv::norm(resSingleThread, resMultithread, NORM_L1), MAX_MEAN_DIF*src.total());
- }
- }
- INSTANTIATE_TEST_CASE_P(FullSet, DomainTransformTest,
- Combine(Values(szODD, szQVGA), ModeType::all(), SupportedTypes::all(), SupportedTypes::all())
- );
- template<typename SrcVec>
- Mat getChessMat1px(Size sz, double whiteIntensity = 255)
- {
- typedef typename DataType<SrcVec>::channel_type SrcType;
- Mat dst(sz, traits::Type<SrcVec>::value);
- SrcVec black = SrcVec::all(0);
- SrcVec white = SrcVec::all((SrcType)whiteIntensity);
- for (int i = 0; i < dst.rows; i++)
- for (int j = 0; j < dst.cols; j++)
- dst.at<SrcVec>(i, j) = ((i + j) % 2) ? white : black;
- return dst;
- }
- TEST(DomainTransformTest, ChessBoard_NC_accuracy)
- {
- RNG rng(0);
- double MAX_DIF = 1;
- Size sz = szVGA;
- double ss = 80;
- double sc = 60;
- Mat srcb = randomMat(rng, sz, CV_8UC4, 0, 255, true);
- Mat srcf = randomMat(rng, sz, CV_32FC4, 0, 255, true);
- Mat chessb = getChessMat1px<Vec3b>(sz);
- Mat dstb, dstf;
- dtFilter(chessb, srcb.clone(), dstb, ss, sc, DTF_NC);
- dtFilter(chessb, srcf.clone(), dstf, ss, sc, DTF_NC);
- EXPECT_LE(cv::norm(srcb, dstb, NORM_INF), MAX_DIF);
- EXPECT_LE(cv::norm(srcf, dstf, NORM_INF), MAX_DIF);
- }
- TEST(DomainTransformTest, BoxFilter_NC_accuracy)
- {
- double MAX_DIF = 1;
- int radius = 5;
- double sc = 1.0;
- double ss = 1.01*radius / sqrt(3.0);
- Mat src = imread(getOpenCVExtraDir() + "cv/edgefilter/statue.png");
- ASSERT_TRUE(!src.empty());
- Mat1b guide(src.size(), 200);
- Mat res_dt, res_box;
- blur(src, res_box, Size(2 * radius + 1, 2 * radius + 1));
- dtFilter(guide, src, res_dt, ss, sc, DTF_NC, 1);
- EXPECT_LE(cv::norm(res_dt, res_box, NORM_L2), MAX_DIF*src.total());
- }
- TEST(DomainTransformTest, AuthorReferenceAccuracy)
- {
- string dir = getOpenCVExtraDir() + "cv/edgefilter";
- double ss = 30;
- double sc = 0.2 * 255;
- Mat src = imread(dir + "/statue.png");
- Mat ref_NC = imread(dir + "/dt/authors_statue_NC_ss30_sc0.2.png");
- Mat ref_IC = imread(dir + "/dt/authors_statue_IC_ss30_sc0.2.png");
- Mat ref_RF = imread(dir + "/dt/authors_statue_RF_ss30_sc0.2.png");
- ASSERT_FALSE(src.empty());
- ASSERT_FALSE(ref_NC.empty());
- ASSERT_FALSE(ref_IC.empty());
- ASSERT_FALSE(ref_RF.empty());
- Mat res_NC, res_IC, res_RF;
- dtFilter(src, src, res_NC, ss, sc, DTF_NC);
- dtFilter(src, src, res_IC, ss, sc, DTF_IC);
- dtFilter(src, src, res_RF, ss, sc, DTF_RF);
- double totalMaxError = 1.0/64.0*src.total();
- EXPECT_LE(cvtest::norm(res_NC, ref_NC, NORM_L2), totalMaxError);
- EXPECT_LE(cvtest::norm(res_NC, ref_NC, NORM_INF), 1);
- EXPECT_LE(cvtest::norm(res_IC, ref_IC, NORM_L2), totalMaxError);
- EXPECT_LE(cvtest::norm(res_IC, ref_IC, NORM_INF), 1);
- EXPECT_LE(cvtest::norm(res_RF, ref_RF, NORM_L2), totalMaxError);
- EXPECT_LE(cvtest::norm(res_IC, ref_IC, NORM_INF), 1);
- }
- }} // namespace
|