123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "test_precomp.hpp"
- namespace opencv_test {
- Ptr<AdaptiveManifoldFilter> createAMFilterRefImpl(double sigma_s, double sigma_r, bool adjust_outliers = false);
- namespace {
- #ifndef SQR
- #define SQR(x) ((x)*(x))
- #endif
- static string getOpenCVExtraDir()
- {
- return cvtest::TS::ptr()->get_data_path();
- }
- static void checkSimilarity(InputArray res, InputArray ref, double maxNormInf = 1, double maxNormL2 = 1.0 / 64)
- {
- double normInf = cvtest::norm(res, ref, NORM_INF);
- double normL2 = cvtest::norm(res, ref, NORM_L2) / res.total();
- if (maxNormInf >= 0) { EXPECT_LE(normInf, maxNormInf); }
- if (maxNormL2 >= 0) { EXPECT_LE(normL2, maxNormL2); }
- }
- TEST(AdaptiveManifoldTest, SplatSurfaceAccuracy)
- {
- RNG rnd(0);
- for (int i = 0; i < 5; i++)
- {
- Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024));
- int guideCn = rnd.uniform(1, 8);
- Mat guide(sz, CV_MAKE_TYPE(CV_32F, guideCn));
- randu(guide, 0, 1);
- Scalar surfaceValue;
- int srcCn = rnd.uniform(1, 4);
- rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
- Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);
- double sigma_s = rnd.uniform(1.0, 50.0);
- double sigma_r = rnd.uniform(0.1, 0.9);
- Mat res;
- amFilter(guide, src, res, sigma_s, sigma_r, false);
- double normInf = cvtest::norm(src, res, NORM_INF);
- EXPECT_EQ(normInf, 0);
- }
- }
- TEST(AdaptiveManifoldTest, AuthorsReferenceAccuracy)
- {
- String srcImgPath = "cv/edgefilter/kodim23.png";
- String refPaths[] =
- {
- "cv/edgefilter/amf/kodim23_amf_ss5_sr0.3_ref.png",
- "cv/edgefilter/amf/kodim23_amf_ss30_sr0.1_ref.png",
- "cv/edgefilter/amf/kodim23_amf_ss50_sr0.3_ref.png"
- };
- pair<double, double> refParams[] =
- {
- make_pair(5.0, 0.3),
- make_pair(30.0, 0.1),
- make_pair(50.0, 0.3)
- };
- String refOutliersPaths[] =
- {
- "cv/edgefilter/amf/kodim23_amf_ss5_sr0.1_outliers_ref.png",
- "cv/edgefilter/amf/kodim23_amf_ss15_sr0.3_outliers_ref.png",
- "cv/edgefilter/amf/kodim23_amf_ss50_sr0.5_outliers_ref.png"
- };
- pair<double, double> refOutliersParams[] =
- {
- make_pair(5.0, 0.1),
- make_pair(15.0, 0.3),
- make_pair(50.0, 0.5),
- };
- Mat srcImg = imread(getOpenCVExtraDir() + srcImgPath);
- ASSERT_TRUE(!srcImg.empty());
- for (int i = 0; i < 3; i++)
- {
- Mat refRes = imread(getOpenCVExtraDir() + refPaths[i]);
- double sigma_s = refParams[i].first;
- double sigma_r = refParams[i].second;
- ASSERT_TRUE(!refRes.empty());
- Mat res;
- Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, false);
- amf->setUseRNG(false);
- amf->filter(srcImg, res, srcImg);
- amf->collectGarbage();
- checkSimilarity(res, refRes);
- }
- for (int i = 0; i < 3; i++)
- {
- Mat refRes = imread(getOpenCVExtraDir() + refOutliersPaths[i]);
- double sigma_s = refOutliersParams[i].first;
- double sigma_r = refOutliersParams[i].second;
- ASSERT_TRUE(!refRes.empty());
- Mat res;
- Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, true);
- amf->setUseRNG(false);
- amf->filter(srcImg, res, srcImg);
- amf->collectGarbage();
- checkSimilarity(res, refRes);
- }
- }
- typedef tuple<string, string> AMRefTestParams;
- typedef TestWithParam<AMRefTestParams> AdaptiveManifoldRefImplTest;
- TEST_P(AdaptiveManifoldRefImplTest, RefImplAccuracy)
- {
- AMRefTestParams params = GetParam();
- string guideFileName = get<0>(params);
- string srcFileName = get<1>(params);
- Mat guide = imread(getOpenCVExtraDir() + guideFileName);
- Mat src = imread(getOpenCVExtraDir() + srcFileName);
- ASSERT_TRUE(!guide.empty() && !src.empty());
- int seed = 10 * (int)guideFileName.length() + (int)srcFileName.length();
- RNG rnd(seed);
- //inconsistent downsample/upsample operations in reference implementation
- Size dstSize((guide.cols + 15) & ~15, (guide.rows + 15) & ~15);
- resize(guide, guide, dstSize, 0, 0, INTER_LINEAR_EXACT);
- resize(src, src, dstSize, 0, 0, INTER_LINEAR_EXACT);
- int nThreads = cv::getNumThreads();
- if (nThreads == 1)
- throw SkipTestException("Single thread environment");
- for (int iter = 0; iter < 4; iter++)
- {
- double sigma_s = rnd.uniform(1.0, 50.0);
- double sigma_r = rnd.uniform(0.1, 0.9);
- bool adjust_outliers = (iter % 2 == 0);
- cv::setNumThreads(nThreads);
- Mat res;
- amFilter(guide, src, res, sigma_s, sigma_r, adjust_outliers);
- cv::setNumThreads(1);
- Mat resRef;
- Ptr<AdaptiveManifoldFilter> amf = createAMFilterRefImpl(sigma_s, sigma_r, adjust_outliers);
- amf->filter(src, resRef, guide);
- //results of reference implementation may differ on small sigma_s into small isolated region
- //due to low single-precision floating point numbers accuracy
- //therefore the threshold of inf norm was increased
- checkSimilarity(res, resRef, 25);
- }
- }
- INSTANTIATE_TEST_CASE_P(TypicalSet, AdaptiveManifoldRefImplTest,
- Combine(
- Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png"),
- Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png")
- ));
- }} // namespace
|