123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- #!/usr/bin/env python
- '''
- A program demonstrating the use and capabilities of a particular image segmentation algorithm described
- in Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, Arnold W. M. Smeulders:
- "Selective Search for Object Recognition"
- International Journal of Computer Vision, Volume 104 (2), page 154-171, 2013
- Usage:
- ./selectivesearchsegmentation_demo.py input_image (single|fast|quality)
- Use "a" to display less rects, 'd' to display more rects, "q" to quit.
- '''
- import cv2 as cv
- import sys
- if __name__ == '__main__':
- img = cv.imread(sys.argv[1])
- cv.setUseOptimized(True)
- cv.setNumThreads(8)
- gs = cv.ximgproc.segmentation.createSelectiveSearchSegmentation()
- gs.setBaseImage(img)
- if (sys.argv[2][0] == 's'):
- gs.switchToSingleStrategy()
- elif (sys.argv[2][0] == 'f'):
- gs.switchToSelectiveSearchFast()
- elif (sys.argv[2][0] == 'q'):
- gs.switchToSelectiveSearchQuality()
- else:
- print(__doc__)
- sys.exit(1)
- rects = gs.process()
- nb_rects = 10
- while True:
- wimg = img.copy()
- for i in range(len(rects)):
- if (i < nb_rects):
- x, y, w, h = rects[i]
- cv.rectangle(wimg, (x, y), (x+w, y+h), (0, 255, 0), 1, cv.LINE_AA)
- cv.imshow("Output", wimg);
- c = cv.waitKey()
- if (c == 100):
- nb_rects += 10
- elif (c == 97 and nb_rects > 10):
- nb_rects -= 10
- elif (c == 113):
- break
- cv.destroyAllWindows()
|