123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- class CV_DetectorsTest : public cvtest::BaseTest
- {
- public:
- CV_DetectorsTest();
- ~CV_DetectorsTest();
- protected:
- void run(int);
- bool testDetector(const Mat& img, Ptr<Feature2D> detector, vector<KeyPoint>& expected);
- void LoadExpected(const string& file, vector<KeyPoint>& out);
- };
- CV_DetectorsTest::CV_DetectorsTest()
- {
- }
- CV_DetectorsTest::~CV_DetectorsTest() {}
- void getRotation(const Mat& img, Mat& aff, Mat& out)
- {
- Point center(img.cols/2, img.rows/2);
- aff = getRotationMatrix2D(center, 30, 1);
- warpAffine( img, out, aff, img.size());
- }
- void getZoom(const Mat& img, Mat& aff, Mat& out)
- {
- const double mult = 1.2;
- aff.create(2, 3, CV_64F);
- double *data = aff.ptr<double>();
- data[0] = mult; data[1] = 0; data[2] = 0;
- data[3] = 0; data[4] = mult; data[5] = 0;
- warpAffine( img, out, aff, img.size());
- }
- void getBlur(const Mat& img, Mat& aff, Mat& out)
- {
- aff.create(2, 3, CV_64F);
- double *data = aff.ptr<double>();
- data[0] = 1; data[1] = 0; data[2] = 0;
- data[3] = 0; data[4] = 1; data[5] = 0;
- GaussianBlur(img, out, Size(5, 5), 2);
- }
- void getBrightness(const Mat& img, Mat& aff, Mat& out)
- {
- aff.create(2, 3, CV_64F);
- double *data = aff.ptr<double>();
- data[0] = 1; data[1] = 0; data[2] = 0;
- data[3] = 0; data[4] = 1; data[5] = 0;
- cv::add(img, Mat(img.size(), img.type(), Scalar(15)), out);
- }
- #if 0
- void showOrig(const Mat& img, const vector<KeyPoint>& orig_pts)
- {
- Mat img_color;
- cvtColor(img, img_color, COLOR_GRAY2BGR);
- for(size_t i = 0; i < orig_pts.size(); ++i)
- circle(img_color, orig_pts[i].pt, (int)orig_pts[i].size/2, Scalar(0, 255, 0));
- namedWindow("O"); imshow("O", img_color);
- }
- void show(const string& name, const Mat& new_img, const vector<KeyPoint>& new_pts, const vector<KeyPoint>& transf_pts)
- {
- Mat new_img_color;
- cvtColor(new_img, new_img_color, COLOR_GRAY2BGR);
- for(size_t i = 0; i < transf_pts.size(); ++i)
- circle(new_img_color, transf_pts[i].pt, (int)transf_pts[i].size/2, Scalar(255, 0, 0));
- for(size_t i = 0; i < new_pts.size(); ++i)
- circle(new_img_color, new_pts[i].pt, (int)new_pts[i].size/2, Scalar(0, 0, 255));
- namedWindow(name + "_T"); imshow(name + "_T", new_img_color);
- }
- #endif
- struct WrapPoint
- {
- const double* R;
- WrapPoint(const Mat& rmat) : R(rmat.ptr<double>()) { };
- KeyPoint operator()(const KeyPoint& kp) const
- {
- KeyPoint res = kp;
- res.pt.x = static_cast<float>(kp.pt.x * R[0] + kp.pt.y * R[1] + R[2]);
- res.pt.y = static_cast<float>(kp.pt.x * R[3] + kp.pt.y * R[4] + R[5]);
- return res;
- }
- };
- struct sortByR { bool operator()(const KeyPoint& kp1, const KeyPoint& kp2) { return cv::norm(kp1.pt) < cv::norm(kp2.pt); } };
- bool CV_DetectorsTest::testDetector(const Mat& img, Ptr<Feature2D> detector, vector<KeyPoint>& exp)
- {
- vector<KeyPoint> orig_kpts;
- detector->detect(img, orig_kpts);
- typedef void (*TransfFunc )(const Mat&, Mat&, Mat& FransfFunc);
- const TransfFunc transfFunc[] = { getRotation, getZoom, getBlur, getBrightness };
- //const string names[] = { "Rotation", "Zoom", "Blur", "Brightness" };
- const size_t case_num = sizeof(transfFunc)/sizeof(transfFunc[0]);
- vector<Mat> affs(case_num);
- vector<Mat> new_imgs(case_num);
- vector< vector<KeyPoint> > new_kpts(case_num);
- vector< vector<KeyPoint> > transf_kpts(case_num);
- //showOrig(img, orig_kpts);
- for(size_t i = 0; i < case_num; ++i)
- {
- transfFunc[i](img, affs[i], new_imgs[i]);
- detector->detect(new_imgs[i], new_kpts[i]);
- transform(orig_kpts.begin(), orig_kpts.end(), back_inserter(transf_kpts[i]), WrapPoint(affs[i]));
- //show(names[i], new_imgs[i], new_kpts[i], transf_kpts[i]);
- }
- const float thres = 3;
- const float nthres = 3;
- vector<KeyPoint> result;
- for(size_t i = 0; i < orig_kpts.size(); ++i)
- {
- const KeyPoint& okp = orig_kpts[i];
- int foundCounter = 0;
- for(size_t j = 0; j < case_num; ++j)
- {
- const KeyPoint& tkp = transf_kpts[j][i];
- size_t k = 0;
- for(; k < new_kpts[j].size(); ++k)
- if (cv::norm(new_kpts[j][k].pt - tkp.pt) < nthres && fabs(new_kpts[j][k].size - tkp.size) < thres)
- break;
- if (k != new_kpts[j].size())
- ++foundCounter;
- }
- if (foundCounter == (int)case_num)
- result.push_back(okp);
- }
- sort(result.begin(), result.end(), sortByR());
- sort(exp.begin(), exp.end(), sortByR());
- if (result.size() != exp.size())
- {
- ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
- return false;
- }
- int foundCounter1 = 0;
- for(size_t i = 0; i < exp.size(); ++i)
- {
- const KeyPoint& e = exp[i];
- size_t j = 0;
- for(; j < result.size(); ++j)
- {
- const KeyPoint& r = result[i];
- if (cv::norm(r.pt-e.pt) < nthres && fabs(r.size - e.size) < thres)
- break;
- }
- if (j != result.size())
- ++foundCounter1;
- }
- int foundCounter2 = 0;
- for(size_t i = 0; i < result.size(); ++i)
- {
- const KeyPoint& r = result[i];
- size_t j = 0;
- for(; j < exp.size(); ++j)
- {
- const KeyPoint& e = exp[i];
- if (cv::norm(r.pt-e.pt) < nthres && fabs(r.size - e.size) < thres)
- break;
- }
- if (j != exp.size())
- ++foundCounter2;
- }
- //showOrig(img, result); waitKey();
- const float errorRate = 0.9f;
- if (float(foundCounter1)/exp.size() < errorRate || float(foundCounter2)/result.size() < errorRate)
- {
- ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH);
- return false;
- }
- return true;
- }
- void CV_DetectorsTest::LoadExpected(const string& file, vector<KeyPoint>& out)
- {
- Mat mat_exp;
- FileStorage fs(file, FileStorage::READ);
- if (fs.isOpened())
- {
- read( fs["ResultVectorData"], mat_exp, Mat() );
- out.resize(mat_exp.cols / sizeof(KeyPoint));
- copy(mat_exp.ptr<KeyPoint>(), mat_exp.ptr<KeyPoint>() + out.size(), out.begin());
- }
- else
- {
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA);
- out.clear();
- }
- }
- void CV_DetectorsTest::run( int /*start_from*/ )
- {
- Mat img = imread(string(ts->get_data_path()) + "shared/graffiti.png", 0);
- if (img.empty())
- {
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
- return;
- }
- Mat to_test(img.size() * 2, img.type(), Scalar(0));
- Mat roi = to_test(Rect(img.rows/2, img.cols/2, img.cols, img.rows));
- img.copyTo(roi);
- GaussianBlur(to_test, to_test, Size(3, 3), 1.5);
- vector<KeyPoint> exp;
- #ifdef OPENCV_ENABLE_NONFREE
- LoadExpected(string(ts->get_data_path()) + "detectors/surf.xml", exp);
- if (exp.empty())
- return;
- if (!testDetector(to_test, SURF::create(1536+512+512, 2, 2, true, false), exp))
- return;
- #endif
- LoadExpected(string(ts->get_data_path()) + "detectors/star.xml", exp);
- if (exp.empty())
- return;
- if (!testDetector(to_test, StarDetector::create(45, 30, 10, 8, 5), exp))
- return;
- ts->set_failed_test_info( cvtest::TS::OK);
- }
- TEST(Features2d_Detectors, regression) { CV_DetectorsTest test; test.safe_run(); }
- }} // namespace
|