123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- #include <iostream>
- #include <stdio.h>
- #include "opencv2/core.hpp"
- #include "opencv2/core/utility.hpp"
- #include "opencv2/core/ocl.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/features2d.hpp"
- #include "opencv2/calib3d.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/xfeatures2d.hpp"
- using namespace cv;
- using namespace cv::xfeatures2d;
- const int LOOP_NUM = 10;
- const int GOOD_PTS_MAX = 50;
- const float GOOD_PORTION = 0.15f;
- int64 work_begin = 0;
- int64 work_end = 0;
- static void workBegin()
- {
- work_begin = getTickCount();
- }
- static void workEnd()
- {
- work_end = getTickCount() - work_begin;
- }
- static double getTime()
- {
- return work_end /((double)getTickFrequency() )* 1000.;
- }
- struct SURFDetector
- {
- Ptr<Feature2D> surf;
- SURFDetector(double hessian = 800.0)
- {
- surf = SURF::create(hessian);
- }
- template<class T>
- void operator()(const T& in, const T& mask, std::vector<cv::KeyPoint>& pts, T& descriptors, bool useProvided = false)
- {
- surf->detectAndCompute(in, mask, pts, descriptors, useProvided);
- }
- };
- template<class KPMatcher>
- struct SURFMatcher
- {
- KPMatcher matcher;
- template<class T>
- void match(const T& in1, const T& in2, std::vector<cv::DMatch>& matches)
- {
- matcher.match(in1, in2, matches);
- }
- };
- static Mat drawGoodMatches(
- const Mat& img1,
- const Mat& img2,
- const std::vector<KeyPoint>& keypoints1,
- const std::vector<KeyPoint>& keypoints2,
- std::vector<DMatch>& matches,
- std::vector<Point2f>& scene_corners_
- )
- {
- //-- Sort matches and preserve top 10% matches
- std::sort(matches.begin(), matches.end());
- std::vector< DMatch > good_matches;
- double minDist = matches.front().distance;
- double maxDist = matches.back().distance;
- const int ptsPairs = std::min(GOOD_PTS_MAX, (int)(matches.size() * GOOD_PORTION));
- for( int i = 0; i < ptsPairs; i++ )
- {
- good_matches.push_back( matches[i] );
- }
- std::cout << "\nMax distance: " << maxDist << std::endl;
- std::cout << "Min distance: " << minDist << std::endl;
- std::cout << "Calculating homography using " << ptsPairs << " point pairs." << std::endl;
- // drawing the results
- Mat img_matches;
- drawMatches( img1, keypoints1, img2, keypoints2,
- good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
- std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
- //-- Localize the object
- std::vector<Point2f> obj;
- std::vector<Point2f> scene;
- for( size_t i = 0; i < good_matches.size(); i++ )
- {
- //-- Get the keypoints from the good matches
- obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt );
- scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt );
- }
- //-- Get the corners from the image_1 ( the object to be "detected" )
- std::vector<Point2f> obj_corners(4);
- obj_corners[0] = Point(0,0);
- obj_corners[1] = Point( img1.cols, 0 );
- obj_corners[2] = Point( img1.cols, img1.rows );
- obj_corners[3] = Point( 0, img1.rows );
- std::vector<Point2f> scene_corners(4);
- Mat H = findHomography( obj, scene, RANSAC );
- perspectiveTransform( obj_corners, scene_corners, H);
- scene_corners_ = scene_corners;
- //-- Draw lines between the corners (the mapped object in the scene - image_2 )
- line( img_matches,
- scene_corners[0] + Point2f( (float)img1.cols, 0), scene_corners[1] + Point2f( (float)img1.cols, 0),
- Scalar( 0, 255, 0), 2, LINE_AA );
- line( img_matches,
- scene_corners[1] + Point2f( (float)img1.cols, 0), scene_corners[2] + Point2f( (float)img1.cols, 0),
- Scalar( 0, 255, 0), 2, LINE_AA );
- line( img_matches,
- scene_corners[2] + Point2f( (float)img1.cols, 0), scene_corners[3] + Point2f( (float)img1.cols, 0),
- Scalar( 0, 255, 0), 2, LINE_AA );
- line( img_matches,
- scene_corners[3] + Point2f( (float)img1.cols, 0), scene_corners[0] + Point2f( (float)img1.cols, 0),
- Scalar( 0, 255, 0), 2, LINE_AA );
- return img_matches;
- }
- ////////////////////////////////////////////////////
- // This program demonstrates the usage of SURF_OCL.
- // use cpu findHomography interface to calculate the transformation matrix
- int main(int argc, char* argv[])
- {
- const char* keys =
- "{ h help | | print help message }"
- "{ l left | box.png | specify left image }"
- "{ r right | box_in_scene.png | specify right image }"
- "{ o output | SURF_output.jpg | specify output save path }"
- "{ m cpu_mode | | run without OpenCL }";
- CommandLineParser cmd(argc, argv, keys);
- if (cmd.has("help"))
- {
- std::cout << "Usage: surf_matcher [options]" << std::endl;
- std::cout << "Available options:" << std::endl;
- cmd.printMessage();
- return EXIT_SUCCESS;
- }
- if (cmd.has("cpu_mode"))
- {
- ocl::setUseOpenCL(false);
- std::cout << "OpenCL was disabled" << std::endl;
- }
- UMat img1, img2;
- std::string outpath = cmd.get<std::string>("o");
- std::string leftName = cmd.get<std::string>("l");
- imread(leftName, IMREAD_GRAYSCALE).copyTo(img1);
- if(img1.empty())
- {
- std::cout << "Couldn't load " << leftName << std::endl;
- cmd.printMessage();
- return EXIT_FAILURE;
- }
- std::string rightName = cmd.get<std::string>("r");
- imread(rightName, IMREAD_GRAYSCALE).copyTo(img2);
- if(img2.empty())
- {
- std::cout << "Couldn't load " << rightName << std::endl;
- cmd.printMessage();
- return EXIT_FAILURE;
- }
- double surf_time = 0.;
- //declare input/output
- std::vector<KeyPoint> keypoints1, keypoints2;
- std::vector<DMatch> matches;
- UMat _descriptors1, _descriptors2;
- Mat descriptors1 = _descriptors1.getMat(ACCESS_RW),
- descriptors2 = _descriptors2.getMat(ACCESS_RW);
- //instantiate detectors/matchers
- SURFDetector surf;
- SURFMatcher<BFMatcher> matcher;
- //-- start of timing section
- for (int i = 0; i <= LOOP_NUM; i++)
- {
- if(i == 1) workBegin();
- surf(img1.getMat(ACCESS_READ), Mat(), keypoints1, descriptors1);
- surf(img2.getMat(ACCESS_READ), Mat(), keypoints2, descriptors2);
- matcher.match(descriptors1, descriptors2, matches);
- }
- workEnd();
- std::cout << "FOUND " << keypoints1.size() << " keypoints on first image" << std::endl;
- std::cout << "FOUND " << keypoints2.size() << " keypoints on second image" << std::endl;
- surf_time = getTime();
- std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n";
- std::vector<Point2f> corner;
- Mat img_matches = drawGoodMatches(img1.getMat(ACCESS_READ), img2.getMat(ACCESS_READ), keypoints1, keypoints2, matches, corner);
- //-- Show detected matches
- namedWindow("surf matches", 0);
- imshow("surf matches", img_matches);
- imwrite(outpath, img_matches);
- waitKey(0);
- return EXIT_SUCCESS;
- }
|