123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646 |
- #include <iostream>
- #include "opencv2/opencv_modules.hpp"
- #ifdef HAVE_OPENCV_ML
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/features2d.hpp"
- #include "opencv2/xfeatures2d.hpp"
- #include "opencv2/ml.hpp"
- #include <fstream>
- #include <memory>
- #include <functional>
- #ifdef _WIN32
- #define WIN32_LEAN_AND_MEAN
- #include <windows.h>
- #undef min
- #undef max
- #include "sys/types.h"
- #endif
- #include <sys/stat.h>
- #define DEBUG_DESC_PROGRESS
- using namespace cv;
- using namespace cv::xfeatures2d;
- using namespace cv::ml;
- using namespace std;
- const string paramsFile = "params.xml";
- const string vocabularyFile = "vocabulary.xml.gz";
- const string bowImageDescriptorsDir = "/bowImageDescriptors";
- const string svmsDir = "/svms";
- const string plotsDir = "/plots";
- static void help(char** argv)
- {
- cout << "\nThis program shows how to read in, train on and produce test results for the PASCAL VOC (Visual Object Challenge) data. \n"
- << "It shows how to use detectors, descriptors and recognition methods \n"
- "Using OpenCV version %s\n" << CV_VERSION << "\n"
- << "Call: \n"
- << "Format:\n ./" << argv[0] << " [VOC path] [result directory] \n"
- << " or: \n"
- << " ./" << argv[0] << " [VOC path] [result directory] [feature detector] [descriptor extractor] [descriptor matcher] \n"
- << "\n"
- << "Input parameters: \n"
- << "[VOC path] Path to Pascal VOC data (e.g. /home/my/VOCdevkit/VOC2010). Note: VOC2007-VOC2010 are supported. \n"
- << "[result directory] Path to result diractory. Following folders will be created in [result directory]: \n"
- << " bowImageDescriptors - to store image descriptors, \n"
- << " svms - to store trained svms, \n"
- << " plots - to store files for plots creating. \n"
- << "[feature detector] Feature detector name (e.g. SURF, FAST...) - see createFeatureDetector() function in detectors.cpp \n"
- << " Currently 12/2010, this is FAST, STAR, SIFT, SURF, MSER, GFTT, HARRIS \n"
- << "[descriptor extractor] Descriptor extractor name (e.g. SURF, SIFT) - see createDescriptorExtractor() function in descriptors.cpp \n"
- << " Currently 12/2010, this is SURF, OpponentSIFT, SIFT, OpponentSURF, BRIEF \n"
- << "[descriptor matcher] Descriptor matcher name (e.g. BruteForce) - see createDescriptorMatcher() function in matchers.cpp \n"
- << " Currently 12/2010, this is BruteForce, BruteForce-L1, FlannBased, BruteForce-Hamming, BruteForce-HammingLUT \n"
- << "\n";
- }
- static void makeDir( const string& dir )
- {
- #if defined WIN32 || defined _WIN32
- CreateDirectory( dir.c_str(), 0 );
- #else
- mkdir( dir.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH );
- #endif
- }
- static void makeUsedDirs( const string& rootPath )
- {
- makeDir(rootPath + bowImageDescriptorsDir);
- makeDir(rootPath + svmsDir);
- makeDir(rootPath + plotsDir);
- }
- /****************************************************************************************\
- * Classes to work with PASCAL VOC dataset *
- \****************************************************************************************/
- //
- // TODO: refactor this part of the code
- //
- //used to specify the (sub-)dataset over which operations are performed
- enum ObdDatasetType {CV_OBD_TRAIN, CV_OBD_TEST};
- class ObdObject
- {
- public:
- string object_class;
- Rect boundingBox;
- };
- //extended object data specific to VOC
- enum VocPose {CV_VOC_POSE_UNSPECIFIED, CV_VOC_POSE_FRONTAL, CV_VOC_POSE_REAR, CV_VOC_POSE_LEFT, CV_VOC_POSE_RIGHT};
- class VocObjectData
- {
- public:
- bool difficult;
- bool occluded;
- bool truncated;
- VocPose pose;
- };
- //enum VocDataset {CV_VOC2007, CV_VOC2008, CV_VOC2009, CV_VOC2010};
- enum VocPlotType {CV_VOC_PLOT_SCREEN, CV_VOC_PLOT_PNG};
- enum VocGT {CV_VOC_GT_NONE, CV_VOC_GT_DIFFICULT, CV_VOC_GT_PRESENT};
- enum VocConfCond {CV_VOC_CCOND_RECALL, CV_VOC_CCOND_SCORETHRESH};
- enum VocTask {CV_VOC_TASK_CLASSIFICATION, CV_VOC_TASK_DETECTION};
- class ObdImage
- {
- public:
- ObdImage(string p_id, string p_path) : id(p_id), path(p_path) {}
- string id;
- string path;
- };
- //used by getDetectorGroundTruth to sort a two dimensional list of floats in descending order
- class ObdScoreIndexSorter
- {
- public:
- float score;
- int image_idx;
- int obj_idx;
- bool operator < (const ObdScoreIndexSorter& compare) const {return (score < compare.score);}
- };
- class VocData
- {
- public:
- VocData( const string& vocPath, bool useTestDataset )
- { initVoc( vocPath, useTestDataset ); }
- ~VocData(){}
- /* functions for returning classification/object data for multiple images given an object class */
- void getClassImages(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<char>& object_present);
- void getClassObjects(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<vector<ObdObject> >& objects);
- void getClassObjects(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<vector<ObdObject> >& objects, vector<vector<VocObjectData> >& object_data, vector<VocGT>& ground_truth);
- /* functions for returning object data for a single image given an image id */
- ObdImage getObjects(const string& id, vector<ObdObject>& objects);
- ObdImage getObjects(const string& id, vector<ObdObject>& objects, vector<VocObjectData>& object_data);
- ObdImage getObjects(const string& obj_class, const string& id, vector<ObdObject>& objects, vector<VocObjectData>& object_data, VocGT& ground_truth);
- /* functions for returning the ground truth (present/absent) for groups of images */
- void getClassifierGroundTruth(const string& obj_class, const vector<ObdImage>& images, vector<char>& ground_truth);
- void getClassifierGroundTruth(const string& obj_class, const vector<string>& images, vector<char>& ground_truth);
- int getDetectorGroundTruth(const string& obj_class, const ObdDatasetType dataset, const vector<ObdImage>& images, const vector<vector<Rect> >& bounding_boxes, const vector<vector<float> >& scores, vector<vector<char> >& ground_truth, vector<vector<char> >& detection_difficult, bool ignore_difficult = true);
- /* functions for writing VOC-compatible results files */
- void writeClassifierResultsFile(const string& out_dir, const string& obj_class, const ObdDatasetType dataset, const vector<ObdImage>& images, const vector<float>& scores, const int competition = 1, const bool overwrite_ifexists = false);
- /* functions for calculating metrics from a set of classification/detection results */
- string getResultsFilename(const string& obj_class, const VocTask task, const ObdDatasetType dataset, const int competition = -1, const int number = -1);
- void calcClassifierPrecRecall(const string& obj_class, const vector<ObdImage>& images, const vector<float>& scores, vector<float>& precision, vector<float>& recall, float& ap, vector<size_t>& ranking);
- void calcClassifierPrecRecall(const string& obj_class, const vector<ObdImage>& images, const vector<float>& scores, vector<float>& precision, vector<float>& recall, float& ap);
- void calcClassifierPrecRecall(const string& input_file, vector<float>& precision, vector<float>& recall, float& ap, bool outputRankingFile = false);
- /* functions for calculating confusion matrices */
- void calcClassifierConfMatRow(const string& obj_class, const vector<ObdImage>& images, const vector<float>& scores, const VocConfCond cond, const float threshold, vector<string>& output_headers, vector<float>& output_values);
- void calcDetectorConfMatRow(const string& obj_class, const ObdDatasetType dataset, const vector<ObdImage>& images, const vector<vector<float> >& scores, const vector<vector<Rect> >& bounding_boxes, const VocConfCond cond, const float threshold, vector<string>& output_headers, vector<float>& output_values, bool ignore_difficult = true);
- /* functions for outputting gnuplot output files */
- void savePrecRecallToGnuplot(const string& output_file, const vector<float>& precision, const vector<float>& recall, const float ap, const string title = string(), const VocPlotType plot_type = CV_VOC_PLOT_SCREEN);
- /* functions for reading in result/ground truth files */
- void readClassifierGroundTruth(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<char>& object_present);
- void readClassifierResultsFile(const std:: string& input_file, vector<ObdImage>& images, vector<float>& scores);
- void readDetectorResultsFile(const string& input_file, vector<ObdImage>& images, vector<vector<float> >& scores, vector<vector<Rect> >& bounding_boxes);
- /* functions for getting dataset info */
- const vector<string>& getObjectClasses();
- string getResultsDirectory();
- protected:
- void initVoc( const string& vocPath, const bool useTestDataset );
- void initVoc2007to2010( const string& vocPath, const bool useTestDataset);
- void readClassifierGroundTruth(const string& filename, vector<string>& image_codes, vector<char>& object_present);
- void readClassifierResultsFile(const string& input_file, vector<string>& image_codes, vector<float>& scores);
- void readDetectorResultsFile(const string& input_file, vector<string>& image_codes, vector<vector<float> >& scores, vector<vector<Rect> >& bounding_boxes);
- void extractVocObjects(const string filename, vector<ObdObject>& objects, vector<VocObjectData>& object_data);
- string getImagePath(const string& input_str);
- void getClassImages_impl(const string& obj_class, const string& dataset_str, vector<ObdImage>& images, vector<char>& object_present);
- void calcPrecRecall_impl(const vector<char>& ground_truth, const vector<float>& scores, vector<float>& precision, vector<float>& recall, float& ap, vector<size_t>& ranking, int recall_normalization = -1);
- //test two bounding boxes to see if they meet the overlap criteria defined in the VOC documentation
- float testBoundingBoxesForOverlap(const Rect detection, const Rect ground_truth);
- //extract class and dataset name from a VOC-standard classification/detection results filename
- void extractDataFromResultsFilename(const string& input_file, string& class_name, string& dataset_name);
- //get classifier ground truth for a single image
- bool getClassifierGroundTruthImage(const string& obj_class, const string& id);
- //utility functions
- void getSortOrder(const vector<float>& values, vector<size_t>& order, bool descending = true);
- int stringToInteger(const string input_str);
- void readFileToString(const string filename, string& file_contents);
- string integerToString(const int input_int);
- string checkFilenamePathsep(const string filename, bool add_trailing_slash = false);
- void convertImageCodesToObdImages(const vector<string>& image_codes, vector<ObdImage>& images);
- int extractXMLBlock(const string src, const string tag, const int searchpos, string& tag_contents);
- //utility sorter
- struct orderingSorter
- {
- bool operator ()(std::pair<size_t, vector<float>::const_iterator> const& a, std::pair<size_t, vector<float>::const_iterator> const& b)
- {
- return (*a.second) > (*b.second);
- }
- };
- //data members
- string m_vocPath;
- string m_vocName;
- //string m_resPath;
- string m_annotation_path;
- string m_image_path;
- string m_imageset_path;
- string m_class_imageset_path;
- vector<string> m_classifier_gt_all_ids;
- vector<char> m_classifier_gt_all_present;
- string m_classifier_gt_class;
- //data members
- string m_train_set;
- string m_test_set;
- vector<string> m_object_classes;
- float m_min_overlap;
- bool m_sampled_ap;
- };
- //Return the classification ground truth data for all images of a given VOC object class
- //--------------------------------------------------------------------------------------
- //INPUTS:
- // - obj_class The VOC object class identifier string
- // - dataset Specifies whether to extract images from the training or test set
- //OUTPUTS:
- // - images An array of ObdImage containing info of all images extracted from the ground truth file
- // - object_present An array of bools specifying whether the object defined by 'obj_class' is present in each image or not
- //NOTES:
- // This function is primarily useful for the classification task, where only
- // whether a given object is present or not in an image is required, and not each object instance's
- // position etc.
- void VocData::getClassImages(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<char>& object_present)
- {
- string dataset_str;
- //generate the filename of the classification ground-truth textfile for the object class
- if (dataset == CV_OBD_TRAIN)
- {
- dataset_str = m_train_set;
- } else {
- dataset_str = m_test_set;
- }
- getClassImages_impl(obj_class, dataset_str, images, object_present);
- }
- void VocData::getClassImages_impl(const string& obj_class, const string& dataset_str, vector<ObdImage>& images, vector<char>& object_present)
- {
- //generate the filename of the classification ground-truth textfile for the object class
- string gtFilename = m_class_imageset_path;
- gtFilename.replace(gtFilename.find("%s"),2,obj_class);
- gtFilename.replace(gtFilename.find("%s"),2,dataset_str);
- //parse the ground truth file, storing in two separate vectors
- //for the image code and the ground truth value
- vector<string> image_codes;
- readClassifierGroundTruth(gtFilename, image_codes, object_present);
- //prepare output arrays
- images.clear();
- convertImageCodesToObdImages(image_codes, images);
- }
- //Return the object data for all images of a given VOC object class
- //-----------------------------------------------------------------
- //INPUTS:
- // - obj_class The VOC object class identifier string
- // - dataset Specifies whether to extract images from the training or test set
- //OUTPUTS:
- // - images An array of ObdImage containing info of all images in chosen dataset (tag, path etc.)
- // - objects Contains the extended object info (bounding box etc.) for each object instance in each image
- // - object_data Contains VOC-specific extended object info (marked difficult etc.)
- // - ground_truth Specifies whether there are any difficult/non-difficult instances of the current
- // object class within each image
- //NOTES:
- // This function returns extended object information in addition to the absent/present
- // classification data returned by getClassImages. The objects returned for each image in the 'objects'
- // array are of all object classes present in the image, and not just the class defined by 'obj_class'.
- // 'ground_truth' can be used to determine quickly whether an object instance of the given class is present
- // in an image or not.
- void VocData::getClassObjects(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<vector<ObdObject> >& objects)
- {
- vector<vector<VocObjectData> > object_data;
- vector<VocGT> ground_truth;
- getClassObjects(obj_class,dataset,images,objects,object_data,ground_truth);
- }
- void VocData::getClassObjects(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<vector<ObdObject> >& objects, vector<vector<VocObjectData> >& object_data, vector<VocGT>& ground_truth)
- {
- //generate the filename of the classification ground-truth textfile for the object class
- string gtFilename = m_class_imageset_path;
- gtFilename.replace(gtFilename.find("%s"),2,obj_class);
- if (dataset == CV_OBD_TRAIN)
- {
- gtFilename.replace(gtFilename.find("%s"),2,m_train_set);
- } else {
- gtFilename.replace(gtFilename.find("%s"),2,m_test_set);
- }
- //parse the ground truth file, storing in two separate vectors
- //for the image code and the ground truth value
- vector<string> image_codes;
- vector<char> object_present;
- readClassifierGroundTruth(gtFilename, image_codes, object_present);
- //prepare output arrays
- images.clear();
- objects.clear();
- object_data.clear();
- ground_truth.clear();
- string annotationFilename;
- vector<ObdObject> image_objects;
- vector<VocObjectData> image_object_data;
- VocGT image_gt;
- //transfer to output arrays and read in object data for each image
- for (size_t i = 0; i < image_codes.size(); ++i)
- {
- ObdImage image = getObjects(obj_class, image_codes[i], image_objects, image_object_data, image_gt);
- images.push_back(image);
- objects.push_back(image_objects);
- object_data.push_back(image_object_data);
- ground_truth.push_back(image_gt);
- }
- }
- //Return ground truth data for the objects present in an image with a given UID
- //-----------------------------------------------------------------------------
- //INPUTS:
- // - id VOC Dataset unique identifier (string code in form YYYY_XXXXXX where YYYY is the year)
- //OUTPUTS:
- // - obj_class (*3) Specifies the object class to use to resolve 'ground_truth'
- // - objects Contains the extended object info (bounding box etc.) for each object in the image
- // - object_data (*2,3) Contains VOC-specific extended object info (marked difficult etc.)
- // - ground_truth (*3) Specifies whether there are any difficult/non-difficult instances of the current
- // object class within the image
- //RETURN VALUE:
- // ObdImage containing path and other details of image file with given code
- //NOTES:
- // There are three versions of this function
- // * One returns a simple array of objects given an id [1]
- // * One returns the same as (1) plus VOC specific object data [2]
- // * One returns the same as (2) plus the ground_truth flag. This also requires an extra input obj_class [3]
- ObdImage VocData::getObjects(const string& id, vector<ObdObject>& objects)
- {
- vector<VocObjectData> object_data;
- ObdImage image = getObjects(id, objects, object_data);
- return image;
- }
- ObdImage VocData::getObjects(const string& id, vector<ObdObject>& objects, vector<VocObjectData>& object_data)
- {
- //first generate the filename of the annotation file
- string annotationFilename = m_annotation_path;
- annotationFilename.replace(annotationFilename.find("%s"),2,id);
- //extract objects contained in the current image from the xml
- extractVocObjects(annotationFilename,objects,object_data);
- //generate image path from extracted string code
- string path = getImagePath(id);
- ObdImage image(id, path);
- return image;
- }
- ObdImage VocData::getObjects(const string& obj_class, const string& id, vector<ObdObject>& objects, vector<VocObjectData>& object_data, VocGT& ground_truth)
- {
- //extract object data (except for ground truth flag)
- ObdImage image = getObjects(id,objects,object_data);
- //pregenerate a flag to indicate whether the current class is present or not in the image
- ground_truth = CV_VOC_GT_NONE;
- //iterate through all objects in current image
- for (size_t j = 0; j < objects.size(); ++j)
- {
- if (objects[j].object_class == obj_class)
- {
- if (object_data[j].difficult == false)
- {
- //if at least one non-difficult example is present, this flag is always set to CV_VOC_GT_PRESENT
- ground_truth = CV_VOC_GT_PRESENT;
- break;
- } else {
- //set if at least one object instance is present, but it is marked difficult
- ground_truth = CV_VOC_GT_DIFFICULT;
- }
- }
- }
- return image;
- }
- //Return ground truth data for the presence/absence of a given object class in an arbitrary array of images
- //---------------------------------------------------------------------------------------------------------
- //INPUTS:
- // - obj_class The VOC object class identifier string
- // - images An array of ObdImage OR strings containing the images for which ground truth
- // will be computed
- //OUTPUTS:
- // - ground_truth An output array indicating the presence/absence of obj_class within each image
- void VocData::getClassifierGroundTruth(const string& obj_class, const vector<ObdImage>& images, vector<char>& ground_truth)
- {
- vector<char>(images.size()).swap(ground_truth);
- vector<ObdObject> objects;
- vector<VocObjectData> object_data;
- vector<char>::iterator gt_it = ground_truth.begin();
- for (vector<ObdImage>::const_iterator it = images.begin(); it != images.end(); ++it, ++gt_it)
- {
- //getObjects(obj_class, it->id, objects, object_data, voc_ground_truth);
- (*gt_it) = (getClassifierGroundTruthImage(obj_class, it->id));
- }
- }
- void VocData::getClassifierGroundTruth(const string& obj_class, const vector<string>& images, vector<char>& ground_truth)
- {
- vector<char>(images.size()).swap(ground_truth);
- vector<ObdObject> objects;
- vector<VocObjectData> object_data;
- vector<char>::iterator gt_it = ground_truth.begin();
- for (vector<string>::const_iterator it = images.begin(); it != images.end(); ++it, ++gt_it)
- {
- //getObjects(obj_class, (*it), objects, object_data, voc_ground_truth);
- (*gt_it) = (getClassifierGroundTruthImage(obj_class, (*it)));
- }
- }
- //Return ground truth data for the accuracy of detection results
- //--------------------------------------------------------------
- //INPUTS:
- // - obj_class The VOC object class identifier string
- // - images An array of ObdImage containing the images for which ground truth
- // will be computed
- // - bounding_boxes A 2D input array containing the bounding box rects of the objects of
- // obj_class which were detected in each image
- //OUTPUTS:
- // - ground_truth A 2D output array indicating whether each object detection was accurate
- // or not
- // - detection_difficult A 2D output array indicating whether the detection fired on an object
- // marked as 'difficult'. This allows it to be ignored if necessary
- // (the voc documentation specifies objects marked as difficult
- // have no effects on the results and are effectively ignored)
- // - (ignore_difficult) If set to true, objects marked as difficult will be ignored when returning
- // the number of hits for p-r normalization (default = true)
- //RETURN VALUE:
- // Returns the number of object hits in total in the gt to allow proper normalization
- // of a p-r curve
- //NOTES:
- // As stated in the VOC documentation, multiple detections of the same object in an image are
- // considered FALSE detections e.g. 5 detections of a single object is counted as 1 correct
- // detection and 4 false detections - it is the responsibility of the participant's system
- // to filter multiple detections from its output
- int VocData::getDetectorGroundTruth(const string& obj_class, const ObdDatasetType dataset, const vector<ObdImage>& images, const vector<vector<Rect> >& bounding_boxes, const vector<vector<float> >& scores, vector<vector<char> >& ground_truth, vector<vector<char> >& detection_difficult, bool ignore_difficult)
- {
- int recall_normalization = 0;
- /* first create a list of indices referring to the elements of bounding_boxes and scores in
- * descending order of scores */
- vector<ObdScoreIndexSorter> sorted_ids;
- {
- /* first count how many objects to allow preallocation */
- size_t obj_count = 0;
- CV_Assert(images.size() == bounding_boxes.size());
- CV_Assert(scores.size() == bounding_boxes.size());
- for (size_t im_idx = 0; im_idx < scores.size(); ++im_idx)
- {
- CV_Assert(scores[im_idx].size() == bounding_boxes[im_idx].size());
- obj_count += scores[im_idx].size();
- }
- /* preallocate id vector */
- sorted_ids.resize(obj_count);
- /* now copy across scores and indexes to preallocated vector */
- int flat_pos = 0;
- for (size_t im_idx = 0; im_idx < scores.size(); ++im_idx)
- {
- for (size_t ob_idx = 0; ob_idx < scores[im_idx].size(); ++ob_idx)
- {
- sorted_ids[flat_pos].score = scores[im_idx][ob_idx];
- sorted_ids[flat_pos].image_idx = (int)im_idx;
- sorted_ids[flat_pos].obj_idx = (int)ob_idx;
- ++flat_pos;
- }
- }
- /* and sort the vector in descending order of score */
- std::sort(sorted_ids.begin(),sorted_ids.end());
- std::reverse(sorted_ids.begin(),sorted_ids.end());
- }
- /* prepare ground truth + difficult vector (1st dimension) */
- vector<vector<char> >(images.size()).swap(ground_truth);
- vector<vector<char> >(images.size()).swap(detection_difficult);
- vector<vector<char> > detected(images.size());
- vector<vector<ObdObject> > img_objects(images.size());
- vector<vector<VocObjectData> > img_object_data(images.size());
- /* preload object ground truth bounding box data */
- {
- vector<vector<ObdObject> > img_objects_all(images.size());
- vector<vector<VocObjectData> > img_object_data_all(images.size());
- for (size_t image_idx = 0; image_idx < images.size(); ++image_idx)
- {
- /* prepopulate ground truth bounding boxes */
- getObjects(images[image_idx].id, img_objects_all[image_idx], img_object_data_all[image_idx]);
- /* meanwhile, also set length of target ground truth + difficult vector to same as number of object detections (2nd dimension) */
- ground_truth[image_idx].resize(bounding_boxes[image_idx].size());
- detection_difficult[image_idx].resize(bounding_boxes[image_idx].size());
- }
- /* save only instances of the object class concerned */
- for (size_t image_idx = 0; image_idx < images.size(); ++image_idx)
- {
- for (size_t obj_idx = 0; obj_idx < img_objects_all[image_idx].size(); ++obj_idx)
- {
- if (img_objects_all[image_idx][obj_idx].object_class == obj_class)
- {
- img_objects[image_idx].push_back(img_objects_all[image_idx][obj_idx]);
- img_object_data[image_idx].push_back(img_object_data_all[image_idx][obj_idx]);
- }
- }
- detected[image_idx].resize(img_objects[image_idx].size(), false);
- }
- }
- /* calculate the total number of objects in the ground truth for the current dataset */
- {
- vector<ObdImage> gt_images;
- vector<char> gt_object_present;
- getClassImages(obj_class, dataset, gt_images, gt_object_present);
- for (size_t image_idx = 0; image_idx < gt_images.size(); ++image_idx)
- {
- vector<ObdObject> gt_img_objects;
- vector<VocObjectData> gt_img_object_data;
- getObjects(gt_images[image_idx].id, gt_img_objects, gt_img_object_data);
- for (size_t obj_idx = 0; obj_idx < gt_img_objects.size(); ++obj_idx)
- {
- if (gt_img_objects[obj_idx].object_class == obj_class)
- {
- if ((gt_img_object_data[obj_idx].difficult == false) || (ignore_difficult == false))
- ++recall_normalization;
- }
- }
- }
- }
- #ifdef PR_DEBUG
- int printed_count = 0;
- #endif
- /* now iterate through detections in descending order of score, assigning to ground truth bounding boxes if possible */
- for (size_t detect_idx = 0; detect_idx < sorted_ids.size(); ++detect_idx)
- {
- //read in indexes to make following code easier to read
- int im_idx = sorted_ids[detect_idx].image_idx;
- int ob_idx = sorted_ids[detect_idx].obj_idx;
- //set ground truth for the current object to false by default
- ground_truth[im_idx][ob_idx] = false;
- detection_difficult[im_idx][ob_idx] = false;
- float maxov = -1.0;
- bool max_is_difficult = false;
- int max_gt_obj_idx = -1;
- //-- for each detected object iterate through objects present in the bounding box ground truth --
- for (size_t gt_obj_idx = 0; gt_obj_idx < img_objects[im_idx].size(); ++gt_obj_idx)
- {
- if (detected[im_idx][gt_obj_idx] == false)
- {
- //check if the detected object and ground truth object overlap by a sufficient margin
- float ov = testBoundingBoxesForOverlap(bounding_boxes[im_idx][ob_idx], img_objects[im_idx][gt_obj_idx].boundingBox);
- if (ov != -1.0)
- {
- //if all conditions are met store the overlap score and index (as objects are assigned to the highest scoring match)
- if (ov > maxov)
- {
- maxov = ov;
- max_gt_obj_idx = (int)gt_obj_idx;
- //store whether the maximum detection is marked as difficult or not
- max_is_difficult = (img_object_data[im_idx][gt_obj_idx].difficult);
- }
- }
- }
- }
- //-- if a match was found, set the ground truth of the current object to true --
- if (maxov != -1.0)
- {
- CV_Assert(max_gt_obj_idx != -1);
- ground_truth[im_idx][ob_idx] = true;
- //store whether the maximum detection was marked as 'difficult' or not
- detection_difficult[im_idx][ob_idx] = max_is_difficult;
- //remove the ground truth object so it doesn't match with subsequent detected objects
- //** this is the behaviour defined by the voc documentation **
- detected[im_idx][max_gt_obj_idx] = true;
- }
- #ifdef PR_DEBUG
- if (printed_count < 10)
- {
- cout << printed_count << ": id=" << images[im_idx].id << ", score=" << scores[im_idx][ob_idx] << " (" << ob_idx << ") [" << bounding_boxes[im_idx][ob_idx].x << "," <<
- bounding_boxes[im_idx][ob_idx].y << "," << bounding_boxes[im_idx][ob_idx].width + bounding_boxes[im_idx][ob_idx].x <<
- "," << bounding_boxes[im_idx][ob_idx].height + bounding_boxes[im_idx][ob_idx].y << "] detected=" << ground_truth[im_idx][ob_idx] <<
- ", difficult=" << detection_difficult[im_idx][ob_idx] << endl;
- ++printed_count;
- /* print ground truth */
- for (int gt_obj_idx = 0; gt_obj_idx < img_objects[im_idx].size(); ++gt_obj_idx)
- {
- cout << " GT: [" << img_objects[im_idx][gt_obj_idx].boundingBox.x << "," <<
- img_objects[im_idx][gt_obj_idx].boundingBox.y << "," << img_objects[im_idx][gt_obj_idx].boundingBox.width + img_objects[im_idx][gt_obj_idx].boundingBox.x <<
- "," << img_objects[im_idx][gt_obj_idx].boundingBox.height + img_objects[im_idx][gt_obj_idx].boundingBox.y << "]";
- if (gt_obj_idx == max_gt_obj_idx) cout << " <--- (" << maxov << " overlap)";
- cout << endl;
- }
- }
- #endif
- }
- return recall_normalization;
- }
- //Write VOC-compliant classifier results file
- //-------------------------------------------
- //INPUTS:
- // - obj_class The VOC object class identifier string
- // - dataset Specifies whether working with the training or test set
- // - images An array of ObdImage containing the images for which data will be saved to the result file
- // - scores A corresponding array of confidence scores given a query
- // - (competition) If specified, defines which competition the results are for (see VOC documentation - default 1)
- //NOTES:
- // The result file path and filename are determined automatically using m_results_directory as a base
- void VocData::writeClassifierResultsFile( const string& out_dir, const string& obj_class, const ObdDatasetType dataset, const vector<ObdImage>& images, const vector<float>& scores, const int competition, const bool overwrite_ifexists)
- {
- CV_Assert(images.size() == scores.size());
- string output_file_base, output_file;
- if (dataset == CV_OBD_TRAIN)
- {
- output_file_base = out_dir + "/comp" + integerToString(competition) + "_cls_" + m_train_set + "_" + obj_class;
- } else {
- output_file_base = out_dir + "/comp" + integerToString(competition) + "_cls_" + m_test_set + "_" + obj_class;
- }
- output_file = output_file_base + ".txt";
- //check if file exists, and if so create a numbered new file instead
- if (overwrite_ifexists == false)
- {
- struct stat stFileInfo;
- if (stat(output_file.c_str(),&stFileInfo) == 0)
- {
- string output_file_new;
- int filenum = 0;
- do
- {
- ++filenum;
- output_file_new = output_file_base + "_" + integerToString(filenum);
- output_file = output_file_new + ".txt";
- } while (stat(output_file.c_str(),&stFileInfo) == 0);
- }
- }
- //output data to file
- std::ofstream result_file(output_file.c_str());
- if (result_file.is_open())
- {
- for (size_t i = 0; i < images.size(); ++i)
- {
- result_file << images[i].id << " " << scores[i] << endl;
- }
- result_file.close();
- } else {
- string err_msg = "could not open classifier results file '" + output_file + "' for writing. Before running for the first time, a 'results' subdirectory should be created within the VOC dataset base directory. e.g. if the VOC data is stored in /VOC/VOC2010 then the path /VOC/results must be created.";
- CV_Error(Error::StsError,err_msg.c_str());
- }
- }
- //---------------------------------------
- //CALCULATE METRICS FROM VOC RESULTS DATA
- //---------------------------------------
- //Utility function to construct a VOC-standard classification results filename
- //----------------------------------------------------------------------------
- //INPUTS:
- // - obj_class The VOC object class identifier string
- // - task Specifies whether to generate a filename for the classification or detection task
- // - dataset Specifies whether working with the training or test set
- // - (competition) If specified, defines which competition the results are for (see VOC documentation
- // default of -1 means this is set to 1 for the classification task and 3 for the detection task)
- // - (number) If specified and above 0, defines which of a number of duplicate results file produced for a given set of
- // of settings should be used (this number will be added as a postfix to the filename)
- //NOTES:
- // This is primarily useful for returning the filename of a classification file previously computed using writeClassifierResultsFile
- // for example when calling calcClassifierPrecRecall
- string VocData::getResultsFilename(const string& obj_class, const VocTask task, const ObdDatasetType dataset, const int competition, const int number)
- {
- if ((competition < 1) && (competition != -1))
- CV_Error(Error::StsBadArg,"competition argument should be a positive non-zero number or -1 to accept the default");
- if ((number < 1) && (number != -1))
- CV_Error(Error::StsBadArg,"number argument should be a positive non-zero number or -1 to accept the default");
- string dset, task_type;
- if (dataset == CV_OBD_TRAIN)
- {
- dset = m_train_set;
- } else {
- dset = m_test_set;
- }
- int comp = competition;
- if (task == CV_VOC_TASK_CLASSIFICATION)
- {
- task_type = "cls";
- if (comp == -1) comp = 1;
- } else {
- task_type = "det";
- if (comp == -1) comp = 3;
- }
- stringstream ss;
- if (number < 1)
- {
- ss << "comp" << comp << "_" << task_type << "_" << dset << "_" << obj_class << ".txt";
- } else {
- ss << "comp" << comp << "_" << task_type << "_" << dset << "_" << obj_class << "_" << number << ".txt";
- }
- string filename = ss.str();
- return filename;
- }
- //Calculate metrics for classification results
- //--------------------------------------------
- //INPUTS:
- // - ground_truth A vector of booleans determining whether the currently tested class is present in each input image
- // - scores A vector containing the similarity score for each input image (higher is more similar)
- //OUTPUTS:
- // - precision A vector containing the precision calculated at each datapoint of a p-r curve generated from the result set
- // - recall A vector containing the recall calculated at each datapoint of a p-r curve generated from the result set
- // - ap The ap metric calculated from the result set
- // - (ranking) A vector of the same length as 'ground_truth' and 'scores' containing the order of the indices in both of
- // these arrays when sorting by the ranking score in descending order
- //NOTES:
- // The result file path and filename are determined automatically using m_results_directory as a base
- void VocData::calcClassifierPrecRecall(const string& obj_class, const vector<ObdImage>& images, const vector<float>& scores, vector<float>& precision, vector<float>& recall, float& ap, vector<size_t>& ranking)
- {
- vector<char> res_ground_truth;
- getClassifierGroundTruth(obj_class, images, res_ground_truth);
- calcPrecRecall_impl(res_ground_truth, scores, precision, recall, ap, ranking);
- }
- void VocData::calcClassifierPrecRecall(const string& obj_class, const vector<ObdImage>& images, const vector<float>& scores, vector<float>& precision, vector<float>& recall, float& ap)
- {
- vector<char> res_ground_truth;
- getClassifierGroundTruth(obj_class, images, res_ground_truth);
- vector<size_t> ranking;
- calcPrecRecall_impl(res_ground_truth, scores, precision, recall, ap, ranking);
- }
- //< Overloaded version which accepts VOC classification result file input instead of array of scores/ground truth >
- //INPUTS:
- // - input_file The path to the VOC standard results file to use for calculating precision/recall
- // If a full path is not specified, it is assumed this file is in the VOC standard results directory
- // A VOC standard filename can be retrieved (as used by writeClassifierResultsFile) by calling getClassifierResultsFilename
- void VocData::calcClassifierPrecRecall(const string& input_file, vector<float>& precision, vector<float>& recall, float& ap, bool outputRankingFile)
- {
- //read in classification results file
- vector<string> res_image_codes;
- vector<float> res_scores;
- string input_file_std = checkFilenamePathsep(input_file);
- readClassifierResultsFile(input_file_std, res_image_codes, res_scores);
- //extract the object class and dataset from the results file filename
- string class_name, dataset_name;
- extractDataFromResultsFilename(input_file_std, class_name, dataset_name);
- //generate the ground truth for the images extracted from the results file
- vector<char> res_ground_truth;
- getClassifierGroundTruth(class_name, res_image_codes, res_ground_truth);
- if (outputRankingFile)
- {
- /* 1. store sorting order by score (descending) in 'order' */
- vector<std::pair<size_t, vector<float>::const_iterator> > order(res_scores.size());
- size_t n = 0;
- for (vector<float>::const_iterator it = res_scores.begin(); it != res_scores.end(); ++it, ++n)
- order[n] = make_pair(n, it);
- std::sort(order.begin(),order.end(),orderingSorter());
- /* 2. save ranking results to text file */
- string input_file_std1 = checkFilenamePathsep(input_file);
- size_t fnamestart = input_file_std1.rfind("/");
- string scoregt_file_str = input_file_std1.substr(0,fnamestart+1) + "scoregt_" + class_name + ".txt";
- std::ofstream scoregt_file(scoregt_file_str.c_str());
- if (scoregt_file.is_open())
- {
- for (size_t i = 0; i < res_scores.size(); ++i)
- {
- scoregt_file << res_image_codes[order[i].first] << " " << res_scores[order[i].first] << " " << res_ground_truth[order[i].first] << endl;
- }
- scoregt_file.close();
- } else {
- string err_msg = "could not open scoregt file '" + scoregt_file_str + "' for writing.";
- CV_Error(Error::StsError,err_msg.c_str());
- }
- }
- //finally, calculate precision+recall+ap
- vector<size_t> ranking;
- calcPrecRecall_impl(res_ground_truth,res_scores,precision,recall,ap,ranking);
- }
- //< Protected implementation of Precision-Recall calculation used by both calcClassifierPrecRecall and calcDetectorPrecRecall >
- void VocData::calcPrecRecall_impl(const vector<char>& ground_truth, const vector<float>& scores, vector<float>& precision, vector<float>& recall, float& ap, vector<size_t>& ranking, int recall_normalization)
- {
- CV_Assert(ground_truth.size() == scores.size());
- //add extra element for p-r at 0 recall (in case that first retrieved is positive)
- vector<float>(scores.size()+1).swap(precision);
- vector<float>(scores.size()+1).swap(recall);
- // SORT RESULTS BY THEIR SCORE
- /* 1. store sorting order in 'order' */
- VocData::getSortOrder(scores, ranking);
- #ifdef PR_DEBUG
- std::ofstream scoregt_file("D:/pr.txt");
- if (scoregt_file.is_open())
- {
- for (int i = 0; i < scores.size(); ++i)
- {
- scoregt_file << scores[ranking[i]] << " " << ground_truth[ranking[i]] << endl;
- }
- scoregt_file.close();
- }
- #endif
- // CALCULATE PRECISION+RECALL
- int retrieved_hits = 0;
- int recall_norm;
- if (recall_normalization != -1)
- {
- recall_norm = recall_normalization;
- } else {
- #ifdef CV_CXX11
- recall_norm = (int)std::count_if(ground_truth.begin(),ground_truth.end(),
- [](const char a) { return a == (char)1; });
- #else
- recall_norm = (int)std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to<char>(),(char)1));
- #endif
- }
- ap = 0;
- recall[0] = 0;
- for (size_t idx = 0; idx < ground_truth.size(); ++idx)
- {
- if (ground_truth[ranking[idx]] != 0) ++retrieved_hits;
- precision[idx+1] = static_cast<float>(retrieved_hits)/static_cast<float>(idx+1);
- recall[idx+1] = static_cast<float>(retrieved_hits)/static_cast<float>(recall_norm);
- if (idx == 0)
- {
- //add further point at 0 recall with the same precision value as the first computed point
- precision[idx] = precision[idx+1];
- }
- if (recall[idx+1] == 1.0)
- {
- //if recall = 1, then end early as all positive images have been found
- recall.resize(idx+2);
- precision.resize(idx+2);
- break;
- }
- }
- /* ap calculation */
- if (m_sampled_ap == false)
- {
- // FOR VOC2010+ AP IS CALCULATED FROM ALL DATAPOINTS
- /* make precision monotonically decreasing for purposes of calculating ap */
- vector<float> precision_monot(precision.size());
- vector<float>::iterator prec_m_it = precision_monot.begin();
- for (vector<float>::iterator prec_it = precision.begin(); prec_it != precision.end(); ++prec_it, ++prec_m_it)
- {
- vector<float>::iterator max_elem;
- max_elem = std::max_element(prec_it,precision.end());
- (*prec_m_it) = (*max_elem);
- }
- /* calculate ap */
- for (size_t idx = 0; idx < (recall.size()-1); ++idx)
- {
- ap += (recall[idx+1] - recall[idx])*precision_monot[idx+1] + //no need to take min of prec - is monotonically decreasing
- 0.5f*(recall[idx+1] - recall[idx])*std::abs(precision_monot[idx+1] - precision_monot[idx]);
- }
- } else {
- // FOR BEFORE VOC2010 AP IS CALCULATED BY SAMPLING PRECISION AT RECALL 0.0,0.1,..,1.0
- for (float recall_pos = 0.f; recall_pos <= 1.f; recall_pos += 0.1f)
- {
- //find iterator of the precision corresponding to the first recall >= recall_pos
- vector<float>::iterator recall_it = recall.begin();
- vector<float>::iterator prec_it = precision.begin();
- while ((*recall_it) < recall_pos)
- {
- ++recall_it;
- ++prec_it;
- if (recall_it == recall.end()) break;
- }
- /* if no recall >= recall_pos found, this level of recall is never reached so stop adding to ap */
- if (recall_it == recall.end()) break;
- /* if the prec_it is valid, compute the max precision at this level of recall or higher */
- vector<float>::iterator max_prec = std::max_element(prec_it,precision.end());
- ap += (*max_prec)/11;
- }
- }
- }
- /* functions for calculating confusion matrix rows */
- //Calculate rows of a confusion matrix
- //------------------------------------
- //INPUTS:
- // - obj_class The VOC object class identifier string for the confusion matrix row to compute
- // - images An array of ObdImage containing the images to use for the computation
- // - scores A corresponding array of confidence scores for the presence of obj_class in each image
- // - cond Defines whether to use a cut off point based on recall (CV_VOC_CCOND_RECALL) or score
- // (CV_VOC_CCOND_SCORETHRESH) the latter is useful for classifier detections where positive
- // values are positive detections and negative values are negative detections
- // - threshold Threshold value for cond. In case of CV_VOC_CCOND_RECALL, is proportion recall (e.g. 0.5).
- // In the case of CV_VOC_CCOND_SCORETHRESH is the value above which to count results.
- //OUTPUTS:
- // - output_headers An output vector of object class headers for the confusion matrix row
- // - output_values An output vector of values for the confusion matrix row corresponding to the classes
- // defined in output_headers
- //NOTES:
- // The methodology used by the classifier version of this function is that true positives have a single unit
- // added to the obj_class column in the confusion matrix row, whereas false positives have a single unit
- // distributed in proportion between all the columns in the confusion matrix row corresponding to the objects
- // present in the image.
- void VocData::calcClassifierConfMatRow(const string& obj_class, const vector<ObdImage>& images, const vector<float>& scores, const VocConfCond cond, const float threshold, vector<string>& output_headers, vector<float>& output_values)
- {
- CV_Assert(images.size() == scores.size());
- // SORT RESULTS BY THEIR SCORE
- /* 1. store sorting order in 'ranking' */
- vector<size_t> ranking;
- VocData::getSortOrder(scores, ranking);
- // CALCULATE CONFUSION MATRIX ENTRIES
- /* prepare object category headers */
- output_headers = m_object_classes;
- vector<float>(output_headers.size(),0.0).swap(output_values);
- /* find the index of the target object class in the headers for later use */
- int target_idx;
- {
- vector<string>::iterator target_idx_it = std::find(output_headers.begin(),output_headers.end(),obj_class);
- /* if the target class can not be found, raise an exception */
- if (target_idx_it == output_headers.end())
- {
- string err_msg = "could not find the target object class '" + obj_class + "' in list of valid classes.";
- CV_Error(Error::StsError,err_msg.c_str());
- }
- /* convert iterator to index */
- target_idx = (int)std::distance(output_headers.begin(),target_idx_it);
- }
- /* prepare variables related to calculating recall if using the recall threshold */
- int retrieved_hits = 0;
- int total_relevant = 0;
- if (cond == CV_VOC_CCOND_RECALL)
- {
- vector<char> ground_truth;
- /* in order to calculate the total number of relevant images for normalization of recall
- it's necessary to extract the ground truth for the images under consideration */
- getClassifierGroundTruth(obj_class, images, ground_truth);
- #ifdef CV_CXX11
- total_relevant = (int)std::count_if(ground_truth.begin(),ground_truth.end(),
- [](const char a) { return a == (char)1; });
- #else
- total_relevant = (int)std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to<char>(),(char)1));
- #endif
- }
- /* iterate through images */
- vector<ObdObject> img_objects;
- vector<VocObjectData> img_object_data;
- int total_images = 0;
- for (size_t image_idx = 0; image_idx < images.size(); ++image_idx)
- {
- /* if using the score as the break condition, check for it now */
- if (cond == CV_VOC_CCOND_SCORETHRESH)
- {
- if (scores[ranking[image_idx]] <= threshold) break;
- }
- /* if continuing for this iteration, increment the image counter for later normalization */
- ++total_images;
- /* for each image retrieve the objects contained */
- getObjects(images[ranking[image_idx]].id, img_objects, img_object_data);
- //check if the tested for object class is present
- if (getClassifierGroundTruthImage(obj_class, images[ranking[image_idx]].id))
- {
- //if the target class is present, assign fully to the target class element in the confusion matrix row
- output_values[target_idx] += 1.0;
- if (cond == CV_VOC_CCOND_RECALL) ++retrieved_hits;
- } else {
- //first delete all objects marked as difficult
- for (size_t obj_idx = 0; obj_idx < img_objects.size(); ++obj_idx)
- {
- if (img_object_data[obj_idx].difficult == true)
- {
- vector<ObdObject>::iterator it1 = img_objects.begin();
- std::advance(it1,obj_idx);
- img_objects.erase(it1);
- vector<VocObjectData>::iterator it2 = img_object_data.begin();
- std::advance(it2,obj_idx);
- img_object_data.erase(it2);
- --obj_idx;
- }
- }
- //if the target class is not present, add values to the confusion matrix row in equal proportions to all objects present in the image
- for (size_t obj_idx = 0; obj_idx < img_objects.size(); ++obj_idx)
- {
- //find the index of the currently considered object
- vector<string>::iterator class_idx_it = std::find(output_headers.begin(),output_headers.end(),img_objects[obj_idx].object_class);
- //if the class name extracted from the ground truth file could not be found in the list of available classes, raise an exception
- if (class_idx_it == output_headers.end())
- {
- string err_msg = "could not find object class '" + img_objects[obj_idx].object_class + "' specified in the ground truth file of '" + images[ranking[image_idx]].id +"'in list of valid classes.";
- CV_Error(Error::StsError,err_msg.c_str());
- }
- /* convert iterator to index */
- int class_idx = (int)std::distance(output_headers.begin(),class_idx_it);
- //add to confusion matrix row in proportion
- output_values[class_idx] += 1.f/static_cast<float>(img_objects.size());
- }
- }
- //check break conditions if breaking on certain level of recall
- if (cond == CV_VOC_CCOND_RECALL)
- {
- if(static_cast<float>(retrieved_hits)/static_cast<float>(total_relevant) >= threshold) break;
- }
- }
- /* finally, normalize confusion matrix row */
- for (vector<float>::iterator it = output_values.begin(); it < output_values.end(); ++it)
- {
- (*it) /= static_cast<float>(total_images);
- }
- }
- // NOTE: doesn't ignore repeated detections
- void VocData::calcDetectorConfMatRow(const string& obj_class, const ObdDatasetType dataset, const vector<ObdImage>& images, const vector<vector<float> >& scores, const vector<vector<Rect> >& bounding_boxes, const VocConfCond cond, const float threshold, vector<string>& output_headers, vector<float>& output_values, bool ignore_difficult)
- {
- CV_Assert(images.size() == scores.size());
- CV_Assert(images.size() == bounding_boxes.size());
- //collapse scores and ground_truth vectors into 1D vectors to allow ranking
- /* define final flat vectors */
- vector<string> images_flat;
- vector<float> scores_flat;
- vector<Rect> bounding_boxes_flat;
- {
- /* first count how many objects to allow preallocation */
- int obj_count = 0;
- CV_Assert(scores.size() == bounding_boxes.size());
- for (size_t img_idx = 0; img_idx < scores.size(); ++img_idx)
- {
- CV_Assert(scores[img_idx].size() == bounding_boxes[img_idx].size());
- for (size_t obj_idx = 0; obj_idx < scores[img_idx].size(); ++obj_idx)
- {
- ++obj_count;
- }
- }
- /* preallocate vectors */
- images_flat.resize(obj_count);
- scores_flat.resize(obj_count);
- bounding_boxes_flat.resize(obj_count);
- /* now copy across to preallocated vectors */
- int flat_pos = 0;
- for (size_t img_idx = 0; img_idx < scores.size(); ++img_idx)
- {
- for (size_t obj_idx = 0; obj_idx < scores[img_idx].size(); ++obj_idx)
- {
- images_flat[flat_pos] = images[img_idx].id;
- scores_flat[flat_pos] = scores[img_idx][obj_idx];
- bounding_boxes_flat[flat_pos] = bounding_boxes[img_idx][obj_idx];
- ++flat_pos;
- }
- }
- }
- // SORT RESULTS BY THEIR SCORE
- /* 1. store sorting order in 'ranking' */
- vector<size_t> ranking;
- VocData::getSortOrder(scores_flat, ranking);
- // CALCULATE CONFUSION MATRIX ENTRIES
- /* prepare object category headers */
- output_headers = m_object_classes;
- output_headers.push_back("background");
- vector<float>(output_headers.size(),0.0).swap(output_values);
- /* prepare variables related to calculating recall if using the recall threshold */
- int retrieved_hits = 0;
- int total_relevant = 0;
- if (cond == CV_VOC_CCOND_RECALL)
- {
- // vector<char> ground_truth;
- // /* in order to calculate the total number of relevant images for normalization of recall
- // it's necessary to extract the ground truth for the images under consideration */
- // getClassifierGroundTruth(obj_class, images, ground_truth);
- // total_relevant = std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to<bool>(),true));
- /* calculate the total number of objects in the ground truth for the current dataset */
- vector<ObdImage> gt_images;
- vector<char> gt_object_present;
- getClassImages(obj_class, dataset, gt_images, gt_object_present);
- for (size_t image_idx = 0; image_idx < gt_images.size(); ++image_idx)
- {
- vector<ObdObject> gt_img_objects;
- vector<VocObjectData> gt_img_object_data;
- getObjects(gt_images[image_idx].id, gt_img_objects, gt_img_object_data);
- for (size_t obj_idx = 0; obj_idx < gt_img_objects.size(); ++obj_idx)
- {
- if (gt_img_objects[obj_idx].object_class == obj_class)
- {
- if ((gt_img_object_data[obj_idx].difficult == false) || (ignore_difficult == false))
- ++total_relevant;
- }
- }
- }
- }
- /* iterate through objects */
- vector<ObdObject> img_objects;
- vector<VocObjectData> img_object_data;
- int total_objects = 0;
- for (size_t image_idx = 0; image_idx < images.size(); ++image_idx)
- {
- /* if using the score as the break condition, check for it now */
- if (cond == CV_VOC_CCOND_SCORETHRESH)
- {
- if (scores_flat[ranking[image_idx]] <= threshold) break;
- }
- /* increment the image counter for later normalization */
- ++total_objects;
- /* for each image retrieve the objects contained */
- getObjects(images[ranking[image_idx]].id, img_objects, img_object_data);
- //find the ground truth object which has the highest overlap score with the detected object
- float maxov = -1.0;
- int max_gt_obj_idx = -1;
- //-- for each detected object iterate through objects present in ground truth --
- for (size_t gt_obj_idx = 0; gt_obj_idx < img_objects.size(); ++gt_obj_idx)
- {
- //check difficulty flag
- if (ignore_difficult || (img_object_data[gt_obj_idx].difficult == false))
- {
- //if the class matches, then check if the detected object and ground truth object overlap by a sufficient margin
- float ov = testBoundingBoxesForOverlap(bounding_boxes_flat[ranking[image_idx]], img_objects[gt_obj_idx].boundingBox);
- if (ov != -1.f)
- {
- //if all conditions are met store the overlap score and index (as objects are assigned to the highest scoring match)
- if (ov > maxov)
- {
- maxov = ov;
- max_gt_obj_idx = (int)gt_obj_idx;
- }
- }
- }
- }
- //assign to appropriate object class if an object was detected
- if (maxov != -1.0)
- {
- //find the index of the currently considered object
- vector<string>::iterator class_idx_it = std::find(output_headers.begin(),output_headers.end(),img_objects[max_gt_obj_idx].object_class);
- //if the class name extracted from the ground truth file could not be found in the list of available classes, raise an exception
- if (class_idx_it == output_headers.end())
- {
- string err_msg = "could not find object class '" + img_objects[max_gt_obj_idx].object_class + "' specified in the ground truth file of '" + images[ranking[image_idx]].id +"'in list of valid classes.";
- CV_Error(Error::StsError,err_msg.c_str());
- }
- /* convert iterator to index */
- int class_idx = (int)std::distance(output_headers.begin(),class_idx_it);
- //add to confusion matrix row in proportion
- output_values[class_idx] += 1.0;
- } else {
- //otherwise assign to background class
- output_values[output_values.size()-1] += 1.0;
- }
- //check break conditions if breaking on certain level of recall
- if (cond == CV_VOC_CCOND_RECALL)
- {
- if(static_cast<float>(retrieved_hits)/static_cast<float>(total_relevant) >= threshold) break;
- }
- }
- /* finally, normalize confusion matrix row */
- for (vector<float>::iterator it = output_values.begin(); it < output_values.end(); ++it)
- {
- (*it) /= static_cast<float>(total_objects);
- }
- }
- //Save Precision-Recall results to a p-r curve in GNUPlot format
- //--------------------------------------------------------------
- //INPUTS:
- // - output_file The file to which to save the GNUPlot data file. If only a filename is specified, the data
- // file is saved to the standard VOC results directory.
- // - precision Vector of precisions as returned from calcClassifier/DetectorPrecRecall
- // - recall Vector of recalls as returned from calcClassifier/DetectorPrecRecall
- // - ap ap as returned from calcClassifier/DetectorPrecRecall
- // - (title) Title to use for the plot (if not specified, just the ap is printed as the title)
- // This also specifies the filename of the output file if printing to pdf
- // - (plot_type) Specifies whether to instruct GNUPlot to save to a PDF file (CV_VOC_PLOT_PDF) or directly
- // to screen (CV_VOC_PLOT_SCREEN) in the datafile
- //NOTES:
- // The GNUPlot data file can be executed using GNUPlot from the commandline in the following way:
- // >> GNUPlot <output_file>
- // This will then display the p-r curve on the screen or save it to a pdf file depending on plot_type
- void VocData::savePrecRecallToGnuplot(const string& output_file, const vector<float>& precision, const vector<float>& recall, const float ap, const string title, const VocPlotType plot_type)
- {
- string output_file_std = checkFilenamePathsep(output_file);
- //if no directory is specified, by default save the output file in the results directory
- // if (output_file_std.find("/") == output_file_std.npos)
- // {
- // output_file_std = m_results_directory + output_file_std;
- // }
- std::ofstream plot_file(output_file_std.c_str());
- if (plot_file.is_open())
- {
- plot_file << "set xrange [0:1]" << endl;
- plot_file << "set yrange [0:1]" << endl;
- plot_file << "set size square" << endl;
- string title_text = title;
- if (title_text.size() == 0) title_text = "Precision-Recall Curve";
- plot_file << "set title \"" << title_text << " (ap: " << ap << ")\"" << endl;
- plot_file << "set xlabel \"Recall\"" << endl;
- plot_file << "set ylabel \"Precision\"" << endl;
- plot_file << "set style data lines" << endl;
- plot_file << "set nokey" << endl;
- if (plot_type == CV_VOC_PLOT_PNG)
- {
- plot_file << "set terminal png" << endl;
- string pdf_filename;
- if (title.size() != 0)
- {
- pdf_filename = title;
- } else {
- pdf_filename = "prcurve";
- }
- plot_file << "set out \"" << title << ".png\"" << endl;
- }
- plot_file << "plot \"-\" using 1:2" << endl;
- plot_file << "# X Y" << endl;
- CV_Assert(precision.size() == recall.size());
- for (size_t i = 0; i < precision.size(); ++i)
- {
- plot_file << " " << recall[i] << " " << precision[i] << endl;
- }
- plot_file << "end" << endl;
- if (plot_type == CV_VOC_PLOT_SCREEN)
- {
- plot_file << "pause -1" << endl;
- }
- plot_file.close();
- } else {
- string err_msg = "could not open plot file '" + output_file_std + "' for writing.";
- CV_Error(Error::StsError,err_msg.c_str());
- }
- }
- void VocData::readClassifierGroundTruth(const string& obj_class, const ObdDatasetType dataset, vector<ObdImage>& images, vector<char>& object_present)
- {
- images.clear();
- string gtFilename = m_class_imageset_path;
- gtFilename.replace(gtFilename.find("%s"),2,obj_class);
- if (dataset == CV_OBD_TRAIN)
- {
- gtFilename.replace(gtFilename.find("%s"),2,m_train_set);
- } else {
- gtFilename.replace(gtFilename.find("%s"),2,m_test_set);
- }
- vector<string> image_codes;
- readClassifierGroundTruth(gtFilename, image_codes, object_present);
- convertImageCodesToObdImages(image_codes, images);
- }
- void VocData::readClassifierResultsFile(const std:: string& input_file, vector<ObdImage>& images, vector<float>& scores)
- {
- images.clear();
- string input_file_std = checkFilenamePathsep(input_file);
- //if no directory is specified, by default search for the input file in the results directory
- // if (input_file_std.find("/") == input_file_std.npos)
- // {
- // input_file_std = m_results_directory + input_file_std;
- // }
- vector<string> image_codes;
- readClassifierResultsFile(input_file_std, image_codes, scores);
- convertImageCodesToObdImages(image_codes, images);
- }
- void VocData::readDetectorResultsFile(const string& input_file, vector<ObdImage>& images, vector<vector<float> >& scores, vector<vector<Rect> >& bounding_boxes)
- {
- images.clear();
- string input_file_std = checkFilenamePathsep(input_file);
- //if no directory is specified, by default search for the input file in the results directory
- // if (input_file_std.find("/") == input_file_std.npos)
- // {
- // input_file_std = m_results_directory + input_file_std;
- // }
- vector<string> image_codes;
- readDetectorResultsFile(input_file_std, image_codes, scores, bounding_boxes);
- convertImageCodesToObdImages(image_codes, images);
- }
- const vector<string>& VocData::getObjectClasses()
- {
- return m_object_classes;
- }
- //string VocData::getResultsDirectory()
- //{
- // return m_results_directory;
- //}
- //---------------------------------------------------------
- // Protected Functions ------------------------------------
- //---------------------------------------------------------
- static string getVocName( const string& vocPath )
- {
- size_t found = vocPath.rfind( '/' );
- if( found == string::npos )
- {
- found = vocPath.rfind( '\\' );
- if( found == string::npos )
- return vocPath;
- }
- return vocPath.substr(found + 1, vocPath.size() - found);
- }
- void VocData::initVoc( const string& vocPath, const bool useTestDataset )
- {
- initVoc2007to2010( vocPath, useTestDataset );
- }
- //Initialize file paths and settings for the VOC 2010 dataset
- //-----------------------------------------------------------
- void VocData::initVoc2007to2010( const string& vocPath, const bool useTestDataset )
- {
- //check format of root directory and modify if necessary
- m_vocName = getVocName( vocPath );
- CV_Assert( !m_vocName.compare("VOC2007") || !m_vocName.compare("VOC2008") ||
- !m_vocName.compare("VOC2009") || !m_vocName.compare("VOC2010") );
- m_vocPath = checkFilenamePathsep( vocPath, true );
- if (useTestDataset)
- {
- m_train_set = "trainval";
- m_test_set = "test";
- } else {
- m_train_set = "train";
- m_test_set = "val";
- }
- // initialize main classification/detection challenge paths
- m_annotation_path = m_vocPath + "/Annotations/%s.xml";
- m_image_path = m_vocPath + "/JPEGImages/%s.jpg";
- m_imageset_path = m_vocPath + "/ImageSets/Main/%s.txt";
- m_class_imageset_path = m_vocPath + "/ImageSets/Main/%s_%s.txt";
- //define available object_classes for VOC2010 dataset
- m_object_classes.push_back("aeroplane");
- m_object_classes.push_back("bicycle");
- m_object_classes.push_back("bird");
- m_object_classes.push_back("boat");
- m_object_classes.push_back("bottle");
- m_object_classes.push_back("bus");
- m_object_classes.push_back("car");
- m_object_classes.push_back("cat");
- m_object_classes.push_back("chair");
- m_object_classes.push_back("cow");
- m_object_classes.push_back("diningtable");
- m_object_classes.push_back("dog");
- m_object_classes.push_back("horse");
- m_object_classes.push_back("motorbike");
- m_object_classes.push_back("person");
- m_object_classes.push_back("pottedplant");
- m_object_classes.push_back("sheep");
- m_object_classes.push_back("sofa");
- m_object_classes.push_back("train");
- m_object_classes.push_back("tvmonitor");
- m_min_overlap = 0.5;
- //up until VOC 2010, ap was calculated by sampling p-r curve, not taking complete curve
- m_sampled_ap = ((m_vocName == "VOC2007") || (m_vocName == "VOC2008") || (m_vocName == "VOC2009"));
- }
- //Read a VOC classification ground truth text file for a given object class and dataset
- //-------------------------------------------------------------------------------------
- //INPUTS:
- // - filename The path of the text file to read
- //OUTPUTS:
- // - image_codes VOC image codes extracted from the GT file in the form 20XX_XXXXXX where the first four
- // digits specify the year of the dataset, and the last group specifies a unique ID
- // - object_present For each image in the 'image_codes' array, specifies whether the object class described
- // in the loaded GT file is present or not
- void VocData::readClassifierGroundTruth(const string& filename, vector<string>& image_codes, vector<char>& object_present)
- {
- image_codes.clear();
- object_present.clear();
- std::ifstream gtfile(filename.c_str());
- if (!gtfile.is_open())
- {
- string err_msg = "could not open VOC ground truth textfile '" + filename + "'.";
- CV_Error(Error::StsError,err_msg.c_str());
- }
- string line;
- string image;
- int obj_present = 0;
- while (!gtfile.eof())
- {
- std::getline(gtfile,line);
- std::istringstream iss(line);
- iss >> image >> obj_present;
- if (!iss.fail())
- {
- image_codes.push_back(image);
- object_present.push_back(obj_present == 1);
- } else {
- if (!gtfile.eof()) CV_Error(Error::StsParseError,"error parsing VOC ground truth textfile.");
- }
- }
- gtfile.close();
- }
- void VocData::readClassifierResultsFile(const string& input_file, vector<string>& image_codes, vector<float>& scores)
- {
- //check if results file exists
- std::ifstream result_file(input_file.c_str());
- if (result_file.is_open())
- {
- string line;
- string image;
- float score;
- //read in the results file
- while (!result_file.eof())
- {
- std::getline(result_file,line);
- std::istringstream iss(line);
- iss >> image >> score;
- if (!iss.fail())
- {
- image_codes.push_back(image);
- scores.push_back(score);
- } else {
- if(!result_file.eof()) CV_Error(Error::StsParseError,"error parsing VOC classifier results file.");
- }
- }
- result_file.close();
- } else {
- string err_msg = "could not open classifier results file '" + input_file + "' for reading.";
- CV_Error(Error::StsError,err_msg.c_str());
- }
- }
- void VocData::readDetectorResultsFile(const string& input_file, vector<string>& image_codes, vector<vector<float> >& scores, vector<vector<Rect> >& bounding_boxes)
- {
- image_codes.clear();
- scores.clear();
- bounding_boxes.clear();
- //check if results file exists
- std::ifstream result_file(input_file.c_str());
- if (result_file.is_open())
- {
- string line;
- string image;
- Rect bounding_box;
- float score;
- //read in the results file
- while (!result_file.eof())
- {
- std::getline(result_file,line);
- std::istringstream iss(line);
- iss >> image >> score >> bounding_box.x >> bounding_box.y >> bounding_box.width >> bounding_box.height;
- if (!iss.fail())
- {
- //convert right and bottom positions to width and height
- bounding_box.width -= bounding_box.x;
- bounding_box.height -= bounding_box.y;
- //convert to 0-indexing
- bounding_box.x -= 1;
- bounding_box.y -= 1;
- //store in output vectors
- /* first check if the current image code has been seen before */
- vector<string>::iterator image_codes_it = std::find(image_codes.begin(),image_codes.end(),image);
- if (image_codes_it == image_codes.end())
- {
- image_codes.push_back(image);
- vector<float> score_vect(1);
- score_vect[0] = score;
- scores.push_back(score_vect);
- vector<Rect> bounding_box_vect(1);
- bounding_box_vect[0] = bounding_box;
- bounding_boxes.push_back(bounding_box_vect);
- } else {
- /* if the image index has been seen before, add the current object below it in the 2D arrays */
- int image_idx = (int)std::distance(image_codes.begin(),image_codes_it);
- scores[image_idx].push_back(score);
- bounding_boxes[image_idx].push_back(bounding_box);
- }
- } else {
- if(!result_file.eof()) CV_Error(Error::StsParseError,"error parsing VOC detector results file.");
- }
- }
- result_file.close();
- } else {
- string err_msg = "could not open detector results file '" + input_file + "' for reading.";
- CV_Error(Error::StsError,err_msg.c_str());
- }
- }
- //Read a VOC annotation xml file for a given image
- //------------------------------------------------
- //INPUTS:
- // - filename The path of the xml file to read
- //OUTPUTS:
- // - objects Array of VocObject describing all object instances present in the given image
- void VocData::extractVocObjects(const string filename, vector<ObdObject>& objects, vector<VocObjectData>& object_data)
- {
- #ifdef PR_DEBUG
- int block = 1;
- cout << "SAMPLE VOC OBJECT EXTRACTION for " << filename << ":" << endl;
- #endif
- objects.clear();
- object_data.clear();
- string contents, object_contents, tag_contents;
- readFileToString(filename, contents);
- //keep on extracting 'object' blocks until no more can be found
- if (extractXMLBlock(contents, "annotation", 0, contents) != -1)
- {
- int searchpos = 0;
- searchpos = extractXMLBlock(contents, "object", searchpos, object_contents);
- while (searchpos != -1)
- {
- #ifdef PR_DEBUG
- cout << "SEARCHPOS:" << searchpos << endl;
- cout << "start block " << block << " ---------" << endl;
- cout << object_contents << endl;
- cout << "end block " << block << " -----------" << endl;
- ++block;
- #endif
- ObdObject object;
- VocObjectData object_d;
- //object class -------------
- if (extractXMLBlock(object_contents, "name", 0, tag_contents) == -1) CV_Error(Error::StsError,"missing <name> tag in object definition of '" + filename + "'");
- object.object_class.swap(tag_contents);
- //object bounding box -------------
- int xmax, xmin, ymax, ymin;
- if (extractXMLBlock(object_contents, "xmax", 0, tag_contents) == -1) CV_Error(Error::StsError,"missing <xmax> tag in object definition of '" + filename + "'");
- xmax = stringToInteger(tag_contents);
- if (extractXMLBlock(object_contents, "xmin", 0, tag_contents) == -1) CV_Error(Error::StsError,"missing <xmin> tag in object definition of '" + filename + "'");
- xmin = stringToInteger(tag_contents);
- if (extractXMLBlock(object_contents, "ymax", 0, tag_contents) == -1) CV_Error(Error::StsError,"missing <ymax> tag in object definition of '" + filename + "'");
- ymax = stringToInteger(tag_contents);
- if (extractXMLBlock(object_contents, "ymin", 0, tag_contents) == -1) CV_Error(Error::StsError,"missing <ymin> tag in object definition of '" + filename + "'");
- ymin = stringToInteger(tag_contents);
- object.boundingBox.x = xmin-1; //convert to 0-based indexing
- object.boundingBox.width = xmax - xmin;
- object.boundingBox.y = ymin-1;
- object.boundingBox.height = ymax - ymin;
- CV_Assert(xmin != 0);
- CV_Assert(xmax > xmin);
- CV_Assert(ymin != 0);
- CV_Assert(ymax > ymin);
- //object tags -------------
- if (extractXMLBlock(object_contents, "difficult", 0, tag_contents) != -1)
- {
- object_d.difficult = (tag_contents == "1");
- } else object_d.difficult = false;
- if (extractXMLBlock(object_contents, "occluded", 0, tag_contents) != -1)
- {
- object_d.occluded = (tag_contents == "1");
- } else object_d.occluded = false;
- if (extractXMLBlock(object_contents, "truncated", 0, tag_contents) != -1)
- {
- object_d.truncated = (tag_contents == "1");
- } else object_d.truncated = false;
- if (extractXMLBlock(object_contents, "pose", 0, tag_contents) != -1)
- {
- if (tag_contents == "Frontal") object_d.pose = CV_VOC_POSE_FRONTAL;
- if (tag_contents == "Rear") object_d.pose = CV_VOC_POSE_REAR;
- if (tag_contents == "Left") object_d.pose = CV_VOC_POSE_LEFT;
- if (tag_contents == "Right") object_d.pose = CV_VOC_POSE_RIGHT;
- }
- //add to array of objects
- objects.push_back(object);
- object_data.push_back(object_d);
- //extract next 'object' block from file if it exists
- searchpos = extractXMLBlock(contents, "object", searchpos, object_contents);
- }
- }
- }
- //Converts an image identifier string in the format YYYY_XXXXXX to a single index integer of form XXXXXXYYYY
- //where Y represents a year and returns the image path
- //----------------------------------------------------------------------------------------------------------
- string VocData::getImagePath(const string& input_str)
- {
- string path = m_image_path;
- path.replace(path.find("%s"),2,input_str);
- return path;
- }
- //Tests two boundary boxes for overlap (using the intersection over union metric) and returns the overlap if the objects
- //defined by the two bounding boxes are considered to be matched according to the criterion outlined in
- //the VOC documentation [namely intersection/union > some threshold] otherwise returns -1.0 (no match)
- //----------------------------------------------------------------------------------------------------------
- float VocData::testBoundingBoxesForOverlap(const Rect detection, const Rect ground_truth)
- {
- int detection_x2 = detection.x + detection.width;
- int detection_y2 = detection.y + detection.height;
- int ground_truth_x2 = ground_truth.x + ground_truth.width;
- int ground_truth_y2 = ground_truth.y + ground_truth.height;
- //first calculate the boundaries of the intersection of the rectangles
- int intersection_x = std::max(detection.x, ground_truth.x); //rightmost left
- int intersection_y = std::max(detection.y, ground_truth.y); //bottommost top
- int intersection_x2 = std::min(detection_x2, ground_truth_x2); //leftmost right
- int intersection_y2 = std::min(detection_y2, ground_truth_y2); //topmost bottom
- //then calculate the width and height of the intersection rect
- int intersection_width = intersection_x2 - intersection_x + 1;
- int intersection_height = intersection_y2 - intersection_y + 1;
- //if there is no overlap then return false straight away
- if ((intersection_width <= 0) || (intersection_height <= 0)) return -1.0;
- //otherwise calculate the intersection
- int intersection_area = intersection_width*intersection_height;
- //now calculate the union
- int union_area = (detection.width+1)*(detection.height+1) + (ground_truth.width+1)*(ground_truth.height+1) - intersection_area;
- //calculate the intersection over union and use as threshold as per VOC documentation
- float overlap = static_cast<float>(intersection_area)/static_cast<float>(union_area);
- if (overlap > m_min_overlap)
- {
- return overlap;
- } else {
- return -1.0;
- }
- }
- //Extracts the object class and dataset from the filename of a VOC standard results text file, which takes
- //the format 'comp<n>_{cls/det}_<dataset>_<objclass>.txt'
- //----------------------------------------------------------------------------------------------------------
- void VocData::extractDataFromResultsFilename(const string& input_file, string& class_name, string& dataset_name)
- {
- string input_file_std = checkFilenamePathsep(input_file);
- size_t fnamestart = input_file_std.rfind("/");
- size_t fnameend = input_file_std.rfind(".txt");
- if ((fnamestart == input_file_std.npos) || (fnameend == input_file_std.npos))
- CV_Error(Error::StsError,"Could not extract filename of results file.");
- ++fnamestart;
- if (fnamestart >= fnameend)
- CV_Error(Error::StsError,"Could not extract filename of results file.");
- //extract dataset and class names, triggering exception if the filename format is not correct
- string filename = input_file_std.substr(fnamestart, fnameend-fnamestart);
- size_t datasetstart = filename.find("_");
- datasetstart = filename.find("_",datasetstart+1);
- size_t classstart = filename.find("_",datasetstart+1);
- //allow for appended index after a further '_' by discarding this part if it exists
- size_t classend = filename.find("_",classstart+1);
- if (classend == filename.npos) classend = filename.size();
- if ((datasetstart == filename.npos) || (classstart == filename.npos))
- CV_Error(Error::StsError,"Error parsing results filename. Is it in standard format of 'comp<n>_{cls/det}_<dataset>_<objclass>.txt'?");
- ++datasetstart;
- ++classstart;
- if (((datasetstart-classstart) < 1) || ((classend-datasetstart) < 1))
- CV_Error(Error::StsError,"Error parsing results filename. Is it in standard format of 'comp<n>_{cls/det}_<dataset>_<objclass>.txt'?");
- dataset_name = filename.substr(datasetstart,classstart-datasetstart-1);
- class_name = filename.substr(classstart,classend-classstart);
- }
- bool VocData::getClassifierGroundTruthImage(const string& obj_class, const string& id)
- {
- /* if the classifier ground truth data for all images of the current class has not been loaded yet, load it now */
- if (m_classifier_gt_all_ids.empty() || (m_classifier_gt_class != obj_class))
- {
- m_classifier_gt_all_ids.clear();
- m_classifier_gt_all_present.clear();
- m_classifier_gt_class = obj_class;
- for (int i=0; i<2; ++i) //run twice (once over test set and once over training set)
- {
- //generate the filename of the classification ground-truth textfile for the object class
- string gtFilename = m_class_imageset_path;
- gtFilename.replace(gtFilename.find("%s"),2,obj_class);
- if (i == 0)
- {
- gtFilename.replace(gtFilename.find("%s"),2,m_train_set);
- } else {
- gtFilename.replace(gtFilename.find("%s"),2,m_test_set);
- }
- //parse the ground truth file, storing in two separate vectors
- //for the image code and the ground truth value
- vector<string> image_codes;
- vector<char> object_present;
- readClassifierGroundTruth(gtFilename, image_codes, object_present);
- m_classifier_gt_all_ids.insert(m_classifier_gt_all_ids.end(),image_codes.begin(),image_codes.end());
- m_classifier_gt_all_present.insert(m_classifier_gt_all_present.end(),object_present.begin(),object_present.end());
- CV_Assert(m_classifier_gt_all_ids.size() == m_classifier_gt_all_present.size());
- }
- }
- //search for the image code
- vector<string>::iterator it = find (m_classifier_gt_all_ids.begin(), m_classifier_gt_all_ids.end(), id);
- if (it != m_classifier_gt_all_ids.end())
- {
- //image found, so return corresponding ground truth
- return m_classifier_gt_all_present[std::distance(m_classifier_gt_all_ids.begin(),it)] != 0;
- }
- string err_msg = "could not find classifier ground truth for image '" + id + "' and class '" + obj_class + "'";
- CV_Error(Error::StsError,err_msg.c_str());
- }
- //-------------------------------------------------------------------
- // Protected Functions (utility) ------------------------------------
- //-------------------------------------------------------------------
- //returns a vector containing indexes of the input vector in sorted ascending/descending order
- void VocData::getSortOrder(const vector<float>& values, vector<size_t>& order, bool descending)
- {
- /* 1. store sorting order in 'order_pair' */
- vector<std::pair<size_t, vector<float>::const_iterator> > order_pair(values.size());
- size_t n = 0;
- for (vector<float>::const_iterator it = values.begin(); it != values.end(); ++it, ++n)
- order_pair[n] = make_pair(n, it);
- std::sort(order_pair.begin(),order_pair.end(),orderingSorter());
- if (descending == false) std::reverse(order_pair.begin(),order_pair.end());
- vector<size_t>(order_pair.size()).swap(order);
- for (size_t i = 0; i < order_pair.size(); ++i)
- {
- order[i] = order_pair[i].first;
- }
- }
- void VocData::readFileToString(const string filename, string& file_contents)
- {
- std::ifstream ifs(filename.c_str());
- if (!ifs.is_open()) CV_Error(Error::StsError,"could not open text file");
- stringstream oss;
- oss << ifs.rdbuf();
- file_contents = oss.str();
- }
- int VocData::stringToInteger(const string input_str)
- {
- int result = 0;
- stringstream ss(input_str);
- if ((ss >> result).fail())
- {
- CV_Error(Error::StsBadArg,"could not perform string to integer conversion");
- }
- return result;
- }
- string VocData::integerToString(const int input_int)
- {
- string result;
- stringstream ss;
- if ((ss << input_int).fail())
- {
- CV_Error(Error::StsBadArg,"could not perform integer to string conversion");
- }
- result = ss.str();
- return result;
- }
- string VocData::checkFilenamePathsep( const string filename, bool add_trailing_slash )
- {
- string filename_new = filename;
- size_t pos = filename_new.find("\\\\");
- while (pos != filename_new.npos)
- {
- filename_new.replace(pos,2,"/");
- pos = filename_new.find("\\\\", pos);
- }
- pos = filename_new.find("\\");
- while (pos != filename_new.npos)
- {
- filename_new.replace(pos,1,"/");
- pos = filename_new.find("\\", pos);
- }
- if (add_trailing_slash)
- {
- //add training slash if this is missing
- if (filename_new.rfind("/") != filename_new.length()-1) filename_new += "/";
- }
- return filename_new;
- }
- void VocData::convertImageCodesToObdImages(const vector<string>& image_codes, vector<ObdImage>& images)
- {
- images.clear();
- images.reserve(image_codes.size());
- string path;
- //transfer to output arrays
- for (size_t i = 0; i < image_codes.size(); ++i)
- {
- //generate image path and indices from extracted string code
- path = getImagePath(image_codes[i]);
- images.push_back(ObdImage(image_codes[i], path));
- }
- }
- //Extract text from within a given tag from an XML file
- //-----------------------------------------------------
- //INPUTS:
- // - src XML source file
- // - tag XML tag delimiting block to extract
- // - searchpos position within src at which to start search
- //OUTPUTS:
- // - tag_contents text extracted between <tag> and </tag> tags
- //RETURN VALUE:
- // - the position of the final character extracted in tag_contents within src
- // (can be used to call extractXMLBlock recursively to extract multiple blocks)
- // returns -1 if the tag could not be found
- int VocData::extractXMLBlock(const string src, const string tag, const int searchpos, string& tag_contents)
- {
- size_t startpos, next_startpos, endpos;
- int embed_count = 1;
- //find position of opening tag
- startpos = src.find("<" + tag + ">", searchpos);
- if (startpos == string::npos) return -1;
- //initialize endpos -
- // start searching for end tag anywhere after opening tag
- endpos = startpos;
- //find position of next opening tag
- next_startpos = src.find("<" + tag + ">", startpos+1);
- //match opening tags with closing tags, and only
- //accept final closing tag of same level as original
- //opening tag
- while (embed_count > 0)
- {
- endpos = src.find("</" + tag + ">", endpos+1);
- if (endpos == string::npos) return -1;
- //the next code is only executed if there are embedded tags with the same name
- if (next_startpos != string::npos)
- {
- while (next_startpos<endpos)
- {
- //counting embedded start tags
- ++embed_count;
- next_startpos = src.find("<" + tag + ">", next_startpos+1);
- if (next_startpos == string::npos) break;
- }
- }
- //passing end tag so decrement nesting level
- --embed_count;
- }
- //finally, extract the tag region
- startpos += tag.length() + 2;
- if (startpos > src.length()) return -1;
- if (endpos > src.length()) return -1;
- tag_contents = src.substr(startpos,endpos-startpos);
- return static_cast<int>(endpos);
- }
- /****************************************************************************************\
- * Sample on image classification *
- \****************************************************************************************/
- //
- // This part of the code was a little refactor
- //
- struct DDMParams
- {
- DDMParams() : detectorType("SURF"), descriptorType("SURF"), matcherType("BruteForce") {}
- DDMParams( const string _detectorType, const string _descriptorType, const string& _matcherType ) :
- detectorType(_detectorType), descriptorType(_descriptorType), matcherType(_matcherType){}
- void read( const FileNode& fn )
- {
- fn["detectorType"] >> detectorType;
- fn["descriptorType"] >> descriptorType;
- fn["matcherType"] >> matcherType;
- }
- void write( FileStorage& fs ) const
- {
- fs << "detectorType" << detectorType;
- fs << "descriptorType" << descriptorType;
- fs << "matcherType" << matcherType;
- }
- void print() const
- {
- cout << "detectorType: " << detectorType << endl;
- cout << "descriptorType: " << descriptorType << endl;
- cout << "matcherType: " << matcherType << endl;
- }
- string detectorType;
- string descriptorType;
- string matcherType;
- };
- struct VocabTrainParams
- {
- VocabTrainParams() : trainObjClass("chair"), vocabSize(1000), memoryUse(200), descProportion(0.3f) {}
- VocabTrainParams( const string _trainObjClass, size_t _vocabSize, size_t _memoryUse, float _descProportion ) :
- trainObjClass(_trainObjClass), vocabSize((int)_vocabSize), memoryUse((int)_memoryUse), descProportion(_descProportion) {}
- void read( const FileNode& fn )
- {
- fn["trainObjClass"] >> trainObjClass;
- fn["vocabSize"] >> vocabSize;
- fn["memoryUse"] >> memoryUse;
- fn["descProportion"] >> descProportion;
- }
- void write( FileStorage& fs ) const
- {
- fs << "trainObjClass" << trainObjClass;
- fs << "vocabSize" << vocabSize;
- fs << "memoryUse" << memoryUse;
- fs << "descProportion" << descProportion;
- }
- void print() const
- {
- cout << "trainObjClass: " << trainObjClass << endl;
- cout << "vocabSize: " << vocabSize << endl;
- cout << "memoryUse: " << memoryUse << endl;
- cout << "descProportion: " << descProportion << endl;
- }
- string trainObjClass; // Object class used for training visual vocabulary.
- // It shouldn't matter which object class is specified here - visual vocab will still be the same.
- int vocabSize; //number of visual words in vocabulary to train
- int memoryUse; // Memory to preallocate (in MB) when training vocab.
- // Change this depending on the size of the dataset/available memory.
- float descProportion; // Specifies the number of descriptors to use from each image as a proportion of the total num descs.
- };
- struct SVMTrainParamsExt
- {
- SVMTrainParamsExt() : descPercent(0.5f), targetRatio(0.4f), balanceClasses(true) {}
- SVMTrainParamsExt( float _descPercent, float _targetRatio, bool _balanceClasses ) :
- descPercent(_descPercent), targetRatio(_targetRatio), balanceClasses(_balanceClasses) {}
- void read( const FileNode& fn )
- {
- fn["descPercent"] >> descPercent;
- fn["targetRatio"] >> targetRatio;
- fn["balanceClasses"] >> balanceClasses;
- }
- void write( FileStorage& fs ) const
- {
- fs << "descPercent" << descPercent;
- fs << "targetRatio" << targetRatio;
- fs << "balanceClasses" << balanceClasses;
- }
- void print() const
- {
- cout << "descPercent: " << descPercent << endl;
- cout << "targetRatio: " << targetRatio << endl;
- cout << "balanceClasses: " << balanceClasses << endl;
- }
- float descPercent; // Percentage of extracted descriptors to use for training.
- float targetRatio; // Try to get this ratio of positive to negative samples (minimum).
- bool balanceClasses; // Balance class weights by number of samples in each (if true cSvmTrainTargetRatio is ignored).
- };
- static void readUsedParams( const FileNode& fn, string& vocName, DDMParams& ddmParams, VocabTrainParams& vocabTrainParams, SVMTrainParamsExt& svmTrainParamsExt )
- {
- fn["vocName"] >> vocName;
- FileNode currFn = fn;
- currFn = fn["ddmParams"];
- ddmParams.read( currFn );
- currFn = fn["vocabTrainParams"];
- vocabTrainParams.read( currFn );
- currFn = fn["svmTrainParamsExt"];
- svmTrainParamsExt.read( currFn );
- }
- static void writeUsedParams( FileStorage& fs, const string& vocName, const DDMParams& ddmParams, const VocabTrainParams& vocabTrainParams, const SVMTrainParamsExt& svmTrainParamsExt )
- {
- fs << "vocName" << vocName;
- fs << "ddmParams" << "{";
- ddmParams.write(fs);
- fs << "}";
- fs << "vocabTrainParams" << "{";
- vocabTrainParams.write(fs);
- fs << "}";
- fs << "svmTrainParamsExt" << "{";
- svmTrainParamsExt.write(fs);
- fs << "}";
- }
- static void printUsedParams( const string& vocPath, const string& resDir,
- const DDMParams& ddmParams, const VocabTrainParams& vocabTrainParams,
- const SVMTrainParamsExt& svmTrainParamsExt )
- {
- cout << "CURRENT CONFIGURATION" << endl;
- cout << "----------------------------------------------------------------" << endl;
- cout << "vocPath: " << vocPath << endl;
- cout << "resDir: " << resDir << endl;
- cout << endl; ddmParams.print();
- cout << endl; vocabTrainParams.print();
- cout << endl; svmTrainParamsExt.print();
- cout << "----------------------------------------------------------------" << endl << endl;
- }
- static bool readVocabulary( const string& filename, Mat& vocabulary )
- {
- cout << "Reading vocabulary...";
- FileStorage fs( filename, FileStorage::READ );
- if( fs.isOpened() )
- {
- fs["vocabulary"] >> vocabulary;
- cout << "done" << endl;
- return true;
- }
- return false;
- }
- static bool writeVocabulary( const string& filename, const Mat& vocabulary )
- {
- cout << "Saving vocabulary..." << endl;
- FileStorage fs( filename, FileStorage::WRITE );
- if( fs.isOpened() )
- {
- fs << "vocabulary" << vocabulary;
- return true;
- }
- return false;
- }
- static Mat trainVocabulary( const string& filename, VocData& vocData, const VocabTrainParams& trainParams,
- const Ptr<FeatureDetector>& fdetector, const Ptr<DescriptorExtractor>& dextractor )
- {
- Mat vocabulary;
- if( !readVocabulary( filename, vocabulary) )
- {
- CV_Assert( dextractor->descriptorType() == CV_32FC1 );
- const int elemSize = CV_ELEM_SIZE(dextractor->descriptorType());
- const int descByteSize = dextractor->descriptorSize() * elemSize;
- const int bytesInMB = 1048576;
- const int maxDescCount = (trainParams.memoryUse * bytesInMB) / descByteSize; // Total number of descs to use for training.
- cout << "Extracting VOC data..." << endl;
- vector<ObdImage> images;
- vector<char> objectPresent;
- vocData.getClassImages( trainParams.trainObjClass, CV_OBD_TRAIN, images, objectPresent );
- cout << "Computing descriptors..." << endl;
- RNG& rng = theRNG();
- TermCriteria terminate_criterion;
- terminate_criterion.epsilon = FLT_EPSILON;
- BOWKMeansTrainer bowTrainer( trainParams.vocabSize, terminate_criterion, 3, KMEANS_PP_CENTERS );
- while( images.size() > 0 )
- {
- if( bowTrainer.descriptorsCount() > maxDescCount )
- {
- #ifdef DEBUG_DESC_PROGRESS
- cout << "Breaking due to full memory ( descriptors count = " << bowTrainer.descriptorsCount()
- << "; descriptor size in bytes = " << descByteSize << "; all used memory = "
- << bowTrainer.descriptorsCount()*descByteSize << endl;
- #endif
- break;
- }
- // Randomly pick an image from the dataset which hasn't yet been seen
- // and compute the descriptors from that image.
- int randImgIdx = rng( (unsigned)images.size() );
- Mat colorImage = imread( images[randImgIdx].path );
- vector<KeyPoint> imageKeypoints;
- fdetector->detect( colorImage, imageKeypoints );
- Mat imageDescriptors;
- dextractor->compute( colorImage, imageKeypoints, imageDescriptors );
- //check that there were descriptors calculated for the current image
- if( !imageDescriptors.empty() )
- {
- int descCount = imageDescriptors.rows;
- // Extract trainParams.descProportion descriptors from the image, breaking if the 'allDescriptors' matrix becomes full
- int descsToExtract = static_cast<int>(trainParams.descProportion * static_cast<float>(descCount));
- // Fill mask of used descriptors
- vector<char> usedMask( descCount, false );
- fill( usedMask.begin(), usedMask.begin() + descsToExtract, true );
- for( int i = 0; i < descCount; i++ )
- {
- int i1 = rng(descCount), i2 = rng(descCount);
- char tmp = usedMask[i1]; usedMask[i1] = usedMask[i2]; usedMask[i2] = tmp;
- }
- for( int i = 0; i < descCount; i++ )
- {
- if( usedMask[i] && bowTrainer.descriptorsCount() < maxDescCount )
- bowTrainer.add( imageDescriptors.row(i) );
- }
- }
- #ifdef DEBUG_DESC_PROGRESS
- cout << images.size() << " images left, " << images[randImgIdx].id << " processed - "
- <</* descs_extracted << "/" << image_descriptors.rows << " extracted - " << */
- cvRound((static_cast<double>(bowTrainer.descriptorsCount())/static_cast<double>(maxDescCount))*100.0)
- << " % memory used" << ( imageDescriptors.empty() ? " -> no descriptors extracted, skipping" : "") << endl;
- #endif
- // Delete the current element from images so it is not added again
- images.erase( images.begin() + randImgIdx );
- }
- cout << "Maximum allowed descriptor count: " << maxDescCount << ", Actual descriptor count: " << bowTrainer.descriptorsCount() << endl;
- cout << "Training vocabulary..." << endl;
- vocabulary = bowTrainer.cluster();
- if( !writeVocabulary(filename, vocabulary) )
- {
- cout << "Error: file " << filename << " can not be opened to write" << endl;
- exit(-1);
- }
- }
- return vocabulary;
- }
- static bool readBowImageDescriptor( const string& file, Mat& bowImageDescriptor )
- {
- FileStorage fs( file, FileStorage::READ );
- if( fs.isOpened() )
- {
- fs["imageDescriptor"] >> bowImageDescriptor;
- return true;
- }
- return false;
- }
- static bool writeBowImageDescriptor( const string& file, const Mat& bowImageDescriptor )
- {
- FileStorage fs( file, FileStorage::WRITE );
- if( fs.isOpened() )
- {
- fs << "imageDescriptor" << bowImageDescriptor;
- return true;
- }
- return false;
- }
- // Load in the bag of words vectors for a set of images, from file if possible
- static void calculateImageDescriptors( const vector<ObdImage>& images, vector<Mat>& imageDescriptors,
- Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
- const string& resPath )
- {
- CV_Assert( !bowExtractor->getVocabulary().empty() );
- imageDescriptors.resize( images.size() );
- for( size_t i = 0; i < images.size(); i++ )
- {
- string filename = resPath + bowImageDescriptorsDir + "/" + images[i].id + ".xml.gz";
- if( readBowImageDescriptor( filename, imageDescriptors[i] ) )
- {
- #ifdef DEBUG_DESC_PROGRESS
- cout << "Loaded bag of word vector for image " << i+1 << " of " << images.size() << " (" << images[i].id << ")" << endl;
- #endif
- }
- else
- {
- Mat colorImage = imread( images[i].path );
- #ifdef DEBUG_DESC_PROGRESS
- cout << "Computing descriptors for image " << i+1 << " of " << images.size() << " (" << images[i].id << ")" << flush;
- #endif
- vector<KeyPoint> keypoints;
- fdetector->detect( colorImage, keypoints );
- #ifdef DEBUG_DESC_PROGRESS
- cout << " + generating BoW vector" << std::flush;
- #endif
- bowExtractor->compute( colorImage, keypoints, imageDescriptors[i] );
- #ifdef DEBUG_DESC_PROGRESS
- cout << " ...DONE " << static_cast<int>(static_cast<float>(i+1)/static_cast<float>(images.size())*100.0)
- << " % complete" << endl;
- #endif
- if( !imageDescriptors[i].empty() )
- {
- if( !writeBowImageDescriptor( filename, imageDescriptors[i] ) )
- {
- cout << "Error: file " << filename << "can not be opened to write bow image descriptor" << endl;
- exit(-1);
- }
- }
- }
- }
- }
- static void removeEmptyBowImageDescriptors( vector<ObdImage>& images, vector<Mat>& bowImageDescriptors,
- vector<char>& objectPresent )
- {
- CV_Assert( !images.empty() );
- for( int i = (int)images.size() - 1; i >= 0; i-- )
- {
- bool res = bowImageDescriptors[i].empty();
- if( res )
- {
- cout << "Removing image " << images[i].id << " due to no descriptors..." << endl;
- images.erase( images.begin() + i );
- bowImageDescriptors.erase( bowImageDescriptors.begin() + i );
- objectPresent.erase( objectPresent.begin() + i );
- }
- }
- }
- static void removeBowImageDescriptorsByCount( vector<ObdImage>& images, vector<Mat> bowImageDescriptors, vector<char> objectPresent,
- const SVMTrainParamsExt& svmParamsExt, int descsToDelete )
- {
- RNG& rng = theRNG();
- int pos_ex = (int)std::count( objectPresent.begin(), objectPresent.end(), (char)1 );
- int neg_ex = (int)std::count( objectPresent.begin(), objectPresent.end(), (char)0 );
- while( descsToDelete != 0 )
- {
- int randIdx = rng((unsigned)images.size());
- // Prefer positive training examples according to svmParamsExt.targetRatio if required
- if( objectPresent[randIdx] )
- {
- if( (static_cast<float>(pos_ex)/static_cast<float>(neg_ex+pos_ex) < svmParamsExt.targetRatio) &&
- (neg_ex > 0) && (svmParamsExt.balanceClasses == false) )
- { continue; }
- else
- { pos_ex--; }
- }
- else
- { neg_ex--; }
- images.erase( images.begin() + randIdx );
- bowImageDescriptors.erase( bowImageDescriptors.begin() + randIdx );
- objectPresent.erase( objectPresent.begin() + randIdx );
- descsToDelete--;
- }
- CV_Assert( bowImageDescriptors.size() == objectPresent.size() );
- }
- static void setSVMParams( Ptr<SVM> & svm, const Mat& responses, bool balanceClasses )
- {
- int pos_ex = countNonZero(responses == 1);
- int neg_ex = countNonZero(responses == -1);
- cout << pos_ex << " positive training samples; " << neg_ex << " negative training samples" << endl;
- svm->setType(SVM::C_SVC);
- svm->setKernel(SVM::RBF);
- if( balanceClasses )
- {
- Mat class_wts( 2, 1, CV_32FC1 );
- // The first training sample determines the '+1' class internally, even if it is negative,
- // so store whether this is the case so that the class weights can be reversed accordingly.
- bool reversed_classes = (responses.at<float>(0) < 0.f);
- if( reversed_classes == false )
- {
- class_wts.at<float>(0) = static_cast<float>(pos_ex)/static_cast<float>(pos_ex+neg_ex); // weighting for costs of positive class + 1 (i.e. cost of false positive - larger gives greater cost)
- class_wts.at<float>(1) = static_cast<float>(neg_ex)/static_cast<float>(pos_ex+neg_ex); // weighting for costs of negative class - 1 (i.e. cost of false negative)
- }
- else
- {
- class_wts.at<float>(0) = static_cast<float>(neg_ex)/static_cast<float>(pos_ex+neg_ex);
- class_wts.at<float>(1) = static_cast<float>(pos_ex)/static_cast<float>(pos_ex+neg_ex);
- }
- svm->setClassWeights(class_wts);
- }
- }
- static void setSVMTrainAutoParams( ParamGrid& c_grid, ParamGrid& gamma_grid,
- ParamGrid& p_grid, ParamGrid& nu_grid,
- ParamGrid& coef_grid, ParamGrid& degree_grid )
- {
- c_grid = SVM::getDefaultGrid(SVM::C);
- gamma_grid = SVM::getDefaultGrid(SVM::GAMMA);
- p_grid = SVM::getDefaultGrid(SVM::P);
- p_grid.logStep = 0;
- nu_grid = SVM::getDefaultGrid(SVM::NU);
- nu_grid.logStep = 0;
- coef_grid = SVM::getDefaultGrid(SVM::COEF);
- coef_grid.logStep = 0;
- degree_grid = SVM::getDefaultGrid(SVM::DEGREE);
- degree_grid.logStep = 0;
- }
- static Ptr<SVM> trainSVMClassifier( const SVMTrainParamsExt& svmParamsExt, const string& objClassName, VocData& vocData,
- Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
- const string& resPath )
- {
- /* first check if a previously trained svm for the current class has been saved to file */
- string svmFilename = resPath + svmsDir + "/" + objClassName + ".xml.gz";
- Ptr<SVM> svm;
- FileStorage fs( svmFilename, FileStorage::READ);
- if( fs.isOpened() )
- {
- cout << "*** LOADING SVM CLASSIFIER FOR CLASS " << objClassName << " ***" << endl;
- svm = StatModel::load<SVM>( svmFilename );
- }
- else
- {
- cout << "*** TRAINING CLASSIFIER FOR CLASS " << objClassName << " ***" << endl;
- cout << "CALCULATING BOW VECTORS FOR TRAINING SET OF " << objClassName << "..." << endl;
- // Get classification ground truth for images in the training set
- vector<ObdImage> images;
- vector<Mat> bowImageDescriptors;
- vector<char> objectPresent;
- vocData.getClassImages( objClassName, CV_OBD_TRAIN, images, objectPresent );
- // Compute the bag of words vector for each image in the training set.
- calculateImageDescriptors( images, bowImageDescriptors, bowExtractor, fdetector, resPath );
- // Remove any images for which descriptors could not be calculated
- removeEmptyBowImageDescriptors( images, bowImageDescriptors, objectPresent );
- CV_Assert( svmParamsExt.descPercent > 0.f && svmParamsExt.descPercent <= 1.f );
- if( svmParamsExt.descPercent < 1.f )
- {
- int descsToDelete = static_cast<int>(static_cast<float>(images.size())*(1.0-svmParamsExt.descPercent));
- cout << "Using " << (images.size() - descsToDelete) << " of " << images.size() <<
- " descriptors for training (" << svmParamsExt.descPercent*100.0 << " %)" << endl;
- removeBowImageDescriptorsByCount( images, bowImageDescriptors, objectPresent, svmParamsExt, descsToDelete );
- }
- // Prepare the input matrices for SVM training.
- Mat trainData( (int)images.size(), bowExtractor->getVocabulary().rows, CV_32FC1 );
- Mat responses( (int)images.size(), 1, CV_32SC1 );
- // Transfer bag of words vectors and responses across to the training data matrices
- for( size_t imageIdx = 0; imageIdx < images.size(); imageIdx++ )
- {
- // Transfer image descriptor (bag of words vector) to training data matrix
- Mat submat = trainData.row((int)imageIdx);
- if( bowImageDescriptors[imageIdx].cols != bowExtractor->descriptorSize() )
- {
- cout << "Error: computed bow image descriptor size " << bowImageDescriptors[imageIdx].cols
- << " differs from vocabulary size" << bowExtractor->getVocabulary().cols << endl;
- exit(-1);
- }
- bowImageDescriptors[imageIdx].copyTo( submat );
- // Set response value
- responses.at<int>((int)imageIdx) = objectPresent[imageIdx] ? 1 : -1;
- }
- cout << "TRAINING SVM FOR CLASS ..." << objClassName << "..." << endl;
- svm = SVM::create();
- setSVMParams( svm, responses, svmParamsExt.balanceClasses );
- ParamGrid c_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid;
- setSVMTrainAutoParams( c_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid );
- svm->trainAuto(TrainData::create(trainData, ROW_SAMPLE, responses), 10,
- c_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid);
- cout << "SVM TRAINING FOR CLASS " << objClassName << " COMPLETED" << endl;
- svm->save( svmFilename );
- cout << "SAVED CLASSIFIER TO FILE" << endl;
- }
- return svm;
- }
- static void computeConfidences( const Ptr<SVM>& svm, const string& objClassName, VocData& vocData,
- Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
- const string& resPath )
- {
- cout << "*** CALCULATING CONFIDENCES FOR CLASS " << objClassName << " ***" << endl;
- cout << "CALCULATING BOW VECTORS FOR TEST SET OF " << objClassName << "..." << endl;
- // Get classification ground truth for images in the test set
- vector<ObdImage> images;
- vector<Mat> bowImageDescriptors;
- vector<char> objectPresent;
- vocData.getClassImages( objClassName, CV_OBD_TEST, images, objectPresent );
- // Compute the bag of words vector for each image in the test set
- calculateImageDescriptors( images, bowImageDescriptors, bowExtractor, fdetector, resPath );
- // Remove any images for which descriptors could not be calculated
- removeEmptyBowImageDescriptors( images, bowImageDescriptors, objectPresent);
- // Use the bag of words vectors to calculate classifier output for each image in test set
- cout << "CALCULATING CONFIDENCE SCORES FOR CLASS " << objClassName << "..." << endl;
- vector<float> confidences( images.size() );
- float signMul = 1.f;
- for( size_t imageIdx = 0; imageIdx < images.size(); imageIdx++ )
- {
- if( imageIdx == 0 )
- {
- // In the first iteration, determine the sign of the positive class
- float classVal = confidences[imageIdx] = svm->predict( bowImageDescriptors[imageIdx], noArray(), 0 );
- float scoreVal = confidences[imageIdx] = svm->predict( bowImageDescriptors[imageIdx], noArray(), StatModel::RAW_OUTPUT );
- signMul = (classVal < 0) == (scoreVal < 0) ? 1.f : -1.f;
- }
- // svm output of decision function
- confidences[imageIdx] = signMul * svm->predict( bowImageDescriptors[imageIdx], noArray(), StatModel::RAW_OUTPUT );
- }
- cout << "WRITING QUERY RESULTS TO VOC RESULTS FILE FOR CLASS " << objClassName << "..." << endl;
- vocData.writeClassifierResultsFile( resPath + plotsDir, objClassName, CV_OBD_TEST, images, confidences, 1, true );
- cout << "DONE - " << objClassName << endl;
- cout << "---------------------------------------------------------------" << endl;
- }
- static void computeGnuPlotOutput( const string& resPath, const string& objClassName, VocData& vocData )
- {
- vector<float> precision, recall;
- float ap;
- const string resultFile = vocData.getResultsFilename( objClassName, CV_VOC_TASK_CLASSIFICATION, CV_OBD_TEST);
- const string plotFile = resultFile.substr(0, resultFile.size()-4) + ".plt";
- cout << "Calculating precision recall curve for class '" <<objClassName << "'" << endl;
- vocData.calcClassifierPrecRecall( resPath + plotsDir + "/" + resultFile, precision, recall, ap, true );
- cout << "Outputting to GNUPlot file..." << endl;
- vocData.savePrecRecallToGnuplot( resPath + plotsDir + "/" + plotFile, precision, recall, ap, objClassName, CV_VOC_PLOT_PNG );
- }
- static Ptr<Feature2D> createByName(const String& name)
- {
- if( name == "SIFT" )
- return SIFT::create();
- if( name == "SURF" )
- return SURF::create();
- if( name == "ORB" )
- return ORB::create();
- if( name == "BRISK" )
- return BRISK::create();
- if( name == "KAZE" )
- return KAZE::create();
- if( name == "AKAZE" )
- return AKAZE::create();
- return Ptr<Feature2D>();
- }
- int main(int argc, char** argv)
- {
- if( argc != 3 && argc != 6 )
- {
- help(argv);
- return -1;
- }
- const string vocPath = argv[1], resPath = argv[2];
- // Read or set default parameters
- string vocName;
- DDMParams ddmParams;
- VocabTrainParams vocabTrainParams;
- SVMTrainParamsExt svmTrainParamsExt;
- makeUsedDirs( resPath );
- FileStorage paramsFS( resPath + "/" + paramsFile, FileStorage::READ );
- if( paramsFS.isOpened() )
- {
- readUsedParams( paramsFS.root(), vocName, ddmParams, vocabTrainParams, svmTrainParamsExt );
- CV_Assert( vocName == getVocName(vocPath) );
- }
- else
- {
- vocName = getVocName(vocPath);
- if( argc!= 6 )
- {
- cout << "Feature detector, descriptor extractor, descriptor matcher must be set" << endl;
- return -1;
- }
- ddmParams = DDMParams( argv[3], argv[4], argv[5] ); // from command line
- // vocabTrainParams and svmTrainParamsExt is set by defaults
- paramsFS.open( resPath + "/" + paramsFile, FileStorage::WRITE );
- if( paramsFS.isOpened() )
- {
- writeUsedParams( paramsFS, vocName, ddmParams, vocabTrainParams, svmTrainParamsExt );
- paramsFS.release();
- }
- else
- {
- cout << "File " << (resPath + "/" + paramsFile) << "can not be opened to write" << endl;
- return -1;
- }
- }
- // Create detector, descriptor, matcher.
- if( ddmParams.detectorType != ddmParams.descriptorType )
- {
- cout << "detector and descriptor should be the same\n";
- return -1;
- }
- Ptr<Feature2D> featureDetector = createByName( ddmParams.detectorType );
- Ptr<DescriptorExtractor> descExtractor = featureDetector;
- Ptr<BOWImgDescriptorExtractor> bowExtractor;
- if( !featureDetector || !descExtractor )
- {
- cout << "featureDetector or descExtractor was not created" << endl;
- return -1;
- }
- {
- Ptr<DescriptorMatcher> descMatcher = DescriptorMatcher::create( ddmParams.matcherType );
- if( !featureDetector || !descExtractor || !descMatcher )
- {
- cout << "descMatcher was not created" << endl;
- return -1;
- }
- bowExtractor = makePtr<BOWImgDescriptorExtractor>( descExtractor, descMatcher );
- }
- // Print configuration to screen
- printUsedParams( vocPath, resPath, ddmParams, vocabTrainParams, svmTrainParamsExt );
- // Create object to work with VOC
- VocData vocData( vocPath, false );
- // 1. Train visual word vocabulary if a pre-calculated vocabulary file doesn't already exist from previous run
- Mat vocabulary = trainVocabulary( resPath + "/" + vocabularyFile, vocData, vocabTrainParams,
- featureDetector, descExtractor );
- bowExtractor->setVocabulary( vocabulary );
- // 2. Train a classifier and run a sample query for each object class
- const vector<string>& objClasses = vocData.getObjectClasses(); // object class list
- for( size_t classIdx = 0; classIdx < objClasses.size(); ++classIdx )
- {
- // Train a classifier on train dataset
- Ptr<SVM> svm = trainSVMClassifier( svmTrainParamsExt, objClasses[classIdx], vocData,
- bowExtractor, featureDetector, resPath );
- // Now use the classifier over all images on the test dataset and rank according to score order
- // also calculating precision-recall etc.
- computeConfidences( svm, objClasses[classIdx], vocData,
- bowExtractor, featureDetector, resPath );
- // Calculate precision/recall/ap and use GNUPlot to output to a pdf file
- computeGnuPlotOutput( resPath, objClasses[classIdx], vocData );
- }
- return 0;
- }
- #else
- int main()
- {
- std::cerr << "OpenCV was built without ml module" << std::endl;
- return 0;
- }
- #endif // HAVE_OPENCV_ML
|