123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2015, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- #include "opencv2/tracking/kalman_filters.hpp"
- namespace opencv_test { namespace {
- using namespace cv::detail;
- // In this two tests Unscented Kalman Filter are applied to the dynamic system from example "The reentry problem" from
- // "A New Extension of the Kalman Filter to Nonlinear Systems" by Simon J. Julier and Jeffrey K. Uhlmann.
- class BallisticModel: public UkfSystemModel
- {
- static const double step;
- Mat diff_eq(const Mat& x)
- {
- double x1 = x.at<double>(0, 0);
- double x2 = x.at<double>(1, 0);
- double x3 = x.at<double>(2, 0);
- double x4 = x.at<double>(3, 0);
- double x5 = x.at<double>(4, 0);
- const double h0 = 9.3;
- const double beta0 = 0.59783;
- const double Gm = 3.9860044 * 1e5;
- const double r_e = 6374;
- const double r = sqrt( x1*x1 + x2*x2 );
- const double v = sqrt( x3*x3 + x4*x4 );
- const double d = - beta0 * exp( ( r_e - r )/h0 ) * exp( x5 ) * v;
- const double g = - Gm / (r*r*r);
- Mat fx = x.clone();
- fx.at<double>(0, 0) = x3;
- fx.at<double>(1, 0) = x4;
- fx.at<double>(2, 0) = d * x3 + g * x1;
- fx.at<double>(3, 0) = d * x4 + g * x2;
- fx.at<double>(4, 0) = 0.0;
- return fx;
- }
- public:
- void stateConversionFunction(const Mat& x_k, const Mat& u_k, const Mat& v_k, Mat& x_kplus1)
- {
- Mat v = sqrt(step) * v_k.clone();
- v.at<double>(0, 0) = 0.0;
- v.at<double>(1, 0) = 0.0;
- Mat k1 = diff_eq( x_k ) + v;
- Mat tmp = x_k + step*0.5*k1;
- Mat k2 = diff_eq( tmp ) + v;
- tmp = x_k + step*0.5*k2;
- Mat k3 = diff_eq( tmp ) + v;
- tmp = x_k + step*k3;
- Mat k4 = diff_eq( tmp ) + v;
- x_kplus1 = x_k + (1.0/6.0)*step*( k1 + 2.0*k2 + 2.0*k3 + k4 ) + u_k;
- }
- void measurementFunction(const Mat& x_k, const Mat& n_k, Mat& z_k)
- {
- double x1 = x_k.at<double>(0, 0);
- double x2 = x_k.at<double>(1, 0);
- double x1_r = 6374.0;
- double x2_r = 0.0;
- double R = sqrt( pow( x1 - x1_r, 2 ) + pow( x2 - x2_r, 2 ) );
- double Phi = atan( (x2 - x2_r)/(x1 - x1_r) );
- R += n_k.at<double>(0, 0);
- Phi += n_k.at<double>(1, 0);
- z_k.at<double>(0, 0) = R;
- z_k.at<double>(1, 0) = Phi;
- }
- };
- const double BallisticModel::step = 0.05;
- TEST(UKF, br_landing_point)
- {
- const double abs_error = 0.1;
- const int nIterations = 4000; // number of iterations before landing
- const double landing_coordinate = 2.5; // the expected landing coordinate
- const double alpha = 1;
- const double beta = 2.0;
- const double kappa = -2.0;
- int MP = 2;
- int DP = 5;
- int CP = 0;
- int type = CV_64F;
- Mat processNoiseCov = Mat::zeros( DP, DP, type );
- processNoiseCov.at<double>(0, 0) = 1e-14;
- processNoiseCov.at<double>(1, 1) = 1e-14;
- processNoiseCov.at<double>(2, 2) = 2.4065 * 1e-5;
- processNoiseCov.at<double>(3, 3) = 2.4065 * 1e-5;
- processNoiseCov.at<double>(4, 4) = 1e-6;
- Mat processNoiseCovSqrt = Mat::zeros( DP, DP, type );
- sqrt( processNoiseCov, processNoiseCovSqrt );
- Mat measurementNoiseCov = Mat::zeros( MP, MP, type );
- measurementNoiseCov.at<double>(0, 0) = 1e-3*1e-3;
- measurementNoiseCov.at<double>(1, 1) = 0.13*0.13;
- Mat measurementNoiseCovSqrt = Mat::zeros( MP, MP, type );
- sqrt( measurementNoiseCov, measurementNoiseCovSqrt );
- RNG rng( 117 );
- Mat state( DP, 1, type );
- state.at<double>(0, 0) = 6500.4;
- state.at<double>(1, 0) = 349.14;
- state.at<double>(2, 0) = -1.8093;
- state.at<double>(3, 0) = -6.7967;
- state.at<double>(4, 0) = 0.6932;
- Mat initState = state.clone();
- initState.at<double>(4, 0) = 0.0;
- Mat P = 1e-6 * Mat::eye( DP, DP, type );
- P.at<double>(4, 4) = 1.0;
- Mat measurement( MP, 1, type );
- Mat q( DP, 1, type );
- Mat r( MP, 1, type );
- Ptr<BallisticModel> model( new BallisticModel() );
- UnscentedKalmanFilterParams params( DP, MP, CP, 0, 0, model );
- params.stateInit = initState.clone();
- params.errorCovInit = P.clone();
- params.measurementNoiseCov = measurementNoiseCov.clone();
- params.processNoiseCov = processNoiseCov.clone();
- params.alpha = alpha;
- params.beta = beta;
- params.k = kappa;
- Ptr<UnscentedKalmanFilter> uncsentedKalmanFilter = createUnscentedKalmanFilter(params);
- Mat correctStateUKF( DP, 1, type );
- Mat u = Mat::zeros( DP, 1, type );
- for (int i = 0; i<nIterations; i++)
- {
- rng.fill( q, RNG::NORMAL, Scalar::all(0), Scalar::all(1) );
- q = processNoiseCovSqrt*q;
- rng.fill( r, RNG::NORMAL, Scalar::all(0), Scalar::all(1) );
- r = measurementNoiseCovSqrt*r;
- model->stateConversionFunction(state, u, q, state);
- model->measurementFunction(state, r, measurement);
- uncsentedKalmanFilter->predict();
- correctStateUKF = uncsentedKalmanFilter->correct( measurement );
- }
- double landing_y = correctStateUKF.at<double>(1, 0);
- ASSERT_NEAR(landing_coordinate, landing_y, abs_error);
- }
- TEST(UKF, DISABLED_br_mean_squared_error)
- {
- const double velocity_treshold = 0.09;
- const double state_treshold = 0.9;
- const int nIterations = 4000; // number of iterations before landing
- const double alpha = 1;
- const double beta = 2.0;
- const double kappa = -2.0;
- int MP = 2;
- int DP = 5;
- int CP = 0;
- int type = CV_64F;
- Mat processNoiseCov = Mat::zeros( DP, DP, type );
- processNoiseCov.at<double>(0, 0) = 1e-14;
- processNoiseCov.at<double>(1, 1) = 1e-14;
- processNoiseCov.at<double>(2, 2) = 2.4065 * 1e-5;
- processNoiseCov.at<double>(3, 3) = 2.4065 * 1e-5;
- processNoiseCov.at<double>(4, 4) = 1e-6;
- Mat processNoiseCovSqrt = Mat::zeros( DP, DP, type );
- sqrt( processNoiseCov, processNoiseCovSqrt );
- Mat measurementNoiseCov = Mat::zeros( MP, MP, type );
- measurementNoiseCov.at<double>(0, 0) = 1e-3*1e-3;
- measurementNoiseCov.at<double>(1, 1) = 0.13*0.13;
- Mat measurementNoiseCovSqrt = Mat::zeros( MP, MP, type );
- sqrt( measurementNoiseCov, measurementNoiseCovSqrt );
- RNG rng( 464 );
- Mat state( DP, 1, type );
- state.at<double>(0, 0) = 6500.4;
- state.at<double>(1, 0) = 349.14;
- state.at<double>(2, 0) = -1.8093;
- state.at<double>(3, 0) = -6.7967;
- state.at<double>(4, 0) = 0.6932;
- Mat initState = state.clone();
- Mat initStateKF = state.clone();
- initStateKF.at<double>(4, 0) = 0.0;
- Mat P = 1e-6 * Mat::eye( DP, DP, type );
- P.at<double>(4, 4) = 1.0;
- Mat measurement( MP, 1, type );
- Mat q( DP, 1, type);
- Mat r( MP, 1, type);
- Ptr<BallisticModel> model( new BallisticModel() );
- UnscentedKalmanFilterParams params( DP, MP, CP, 0, 0, model );
- params.stateInit = initStateKF.clone();
- params.errorCovInit = P.clone();
- params.measurementNoiseCov = measurementNoiseCov.clone();
- params.processNoiseCov = processNoiseCov.clone();
- params.alpha = alpha;
- params.beta = beta;
- params.k = kappa;
- Mat predictStateUKF( DP, 1, type );
- Mat correctStateUKF( DP, 1, type );
- Mat errors = Mat::zeros( nIterations, 4, type );
- Mat u = Mat::zeros( DP, 1, type );
- for (int j = 0; j<100; j++)
- {
- Ptr<UnscentedKalmanFilter> uncsentedKalmanFilter = createUnscentedKalmanFilter(params);
- state = initState.clone();
- for (int i = 0; i<nIterations; i++)
- {
- rng.fill( q, RNG::NORMAL, Scalar::all(0), Scalar::all(1) );
- q = processNoiseCovSqrt*q;
- rng.fill( r, RNG::NORMAL, Scalar::all(0), Scalar::all(1) );
- r = measurementNoiseCovSqrt*r;
- model->stateConversionFunction(state, u, q, state);
- model->measurementFunction(state, r, measurement);
- predictStateUKF = uncsentedKalmanFilter->predict();
- correctStateUKF = uncsentedKalmanFilter->correct( measurement );
- Mat errorUKF = state - correctStateUKF;
- for (int l = 0; l<4; l++)
- errors.at<double>(i, l) += pow( errorUKF.at<double>(l, 0), 2.0 );
- }
- }
- errors = errors/100.0;
- sqrt( errors, errors );
- double max_x1 = cvtest::norm(errors.col(0), NORM_INF);
- double max_x2 = cvtest::norm(errors.col(1), NORM_INF);
- double max_x3 = cvtest::norm(errors.col(2), NORM_INF);
- double max_x4 = cvtest::norm(errors.col(3), NORM_INF);
- ASSERT_GE( state_treshold, max_x1 );
- ASSERT_GE( state_treshold, max_x2 );
- ASSERT_GE( velocity_treshold, max_x3 );
- ASSERT_GE( velocity_treshold, max_x4 );
- }
- //In this test Unscented Kalman Filter are applied to the univariate nonstationary growth model (UNGM).
- //This model was used in example from "Unscented Kalman filtering for additive noise case: Augmented vs. non-augmented"
- //by Yuanxin Wu and Dewen Hu.
- class UnivariateNonstationaryGrowthModel: public UkfSystemModel
- {
- public:
- void stateConversionFunction(const Mat& x_k, const Mat& u_k, const Mat& v_k, Mat& x_kplus1)
- {
- double x = x_k.at<double>(0, 0);
- double n = u_k.at<double>(0, 0);
- double q = v_k.at<double>(0, 0);
- double u = u_k.at<double>(0, 0);
- double x1 = 0.5*x + 25*( x/(x*x + 1) ) + 8*cos( 1.2*(n-1) ) + q + u;
- x_kplus1.at<double>(0, 0) = x1;
- }
- void measurementFunction(const Mat& x_k, const Mat& n_k, Mat& z_k)
- {
- double x = x_k.at<double>(0, 0);
- double r = n_k.at<double>(0, 0);
- double y = x*x/20.0 + r;
- z_k.at<double>(0, 0) = y;
- }
- };
- TEST(UKF, DISABLED_ungm_mean_squared_error)
- {
- const double alpha = 1.5;
- const double beta = 2.0;
- const double kappa = 0.0;
- const double mse_treshold = 0.5;
- const int nIterations = 500; // number of observed iterations
- int MP = 1;
- int DP = 1;
- int CP = 0;
- int type = CV_64F;
- Ptr<UnivariateNonstationaryGrowthModel> model( new UnivariateNonstationaryGrowthModel() );
- UnscentedKalmanFilterParams params( DP, MP, CP, 0, 0, model );
- Mat processNoiseCov = Mat::zeros( DP, DP, type );
- processNoiseCov.at<double>(0, 0) = 1.0;
- Mat processNoiseCovSqrt = Mat::zeros( DP, DP, type );
- sqrt( processNoiseCov, processNoiseCovSqrt );
- Mat measurementNoiseCov = Mat::zeros( MP, MP, type );
- measurementNoiseCov.at<double>(0, 0) = 1.0;
- Mat measurementNoiseCovSqrt = Mat::zeros( MP, MP, type );
- sqrt( measurementNoiseCov, measurementNoiseCovSqrt );
- Mat P = Mat::eye( DP, DP, type );
- Mat state( DP, 1, type );
- state.at<double>(0, 0) = 0.1;
- Mat initState = state.clone();
- initState.at<double>(0, 0) = 0.0;
- params.errorCovInit = P;
- params.measurementNoiseCov = measurementNoiseCov;
- params.processNoiseCov = processNoiseCov;
- params.stateInit = initState.clone();
- params.alpha = alpha;
- params.beta = beta;
- params.k = kappa;
- Mat correctStateAUKF( DP, 1, type );
- Mat measurement( MP, 1, type );
- Mat exactMeasurement( MP, 1, type );
- Mat q( DP, 1, type );
- Mat r( MP, 1, type );
- Mat u( DP, 1, type );
- Mat zero = Mat::zeros( MP, 1, type );
- RNG rng( 216 );
- double average_error = 0.0;
- for (int j = 0; j<1000; j++)
- {
- cv::Ptr<UnscentedKalmanFilter> uncsentedKalmanFilter = createUnscentedKalmanFilter( params );
- state.at<double>(0, 0) = 0.1;
- double mse = 0.0;
- for (int i = 0; i<nIterations; i++)
- {
- rng.fill( q, RNG::NORMAL, Scalar::all(0), Scalar::all(1) );
- rng.fill( r, RNG::NORMAL, Scalar::all(0), Scalar::all(1) );
- q = processNoiseCovSqrt*q;
- r = measurementNoiseCovSqrt*r;
- u.at<double>(0, 0) = (double)i;
- model->stateConversionFunction(state, u, q, state);
- model->measurementFunction(state, zero, exactMeasurement);
- model->measurementFunction(state, r, measurement);
- uncsentedKalmanFilter->predict( u );
- correctStateAUKF = uncsentedKalmanFilter->correct( measurement );
- mse += pow( state.at<double>(0, 0) - correctStateAUKF.at<double>(0, 0), 2.0 );
- }
- mse /= nIterations;
- average_error += mse;
- }
- average_error /= 1000.0;
- ASSERT_GE( mse_treshold, average_error );
- }
- }} // namespace
|