123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408 |
- /*
- * webcam-demo.cpp
- *
- * A demo program of End-to-end Scene Text Detection and Recognition using webcam or video.
- *
- * Created on: Jul 31, 2014
- * Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
- */
- #include "opencv2/text.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/features2d.hpp"
- #include <iostream>
- using namespace std;
- using namespace cv;
- using namespace cv::text;
- //ERStat extraction is done in parallel for different channels
- class Parallel_extractCSER: public cv::ParallelLoopBody
- {
- private:
- vector<Mat> &channels;
- vector< vector<ERStat> > ®ions;
- vector< Ptr<ERFilter> > er_filter1;
- vector< Ptr<ERFilter> > er_filter2;
- public:
- Parallel_extractCSER(vector<Mat> &_channels, vector< vector<ERStat> > &_regions,
- vector<Ptr<ERFilter> >_er_filter1, vector<Ptr<ERFilter> >_er_filter2)
- : channels(_channels),regions(_regions),er_filter1(_er_filter1),er_filter2(_er_filter2) {}
- virtual void operator()( const cv::Range &r ) const CV_OVERRIDE
- {
- for (int c=r.start; c < r.end; c++)
- {
- er_filter1[c]->run(channels[c], regions[c]);
- er_filter2[c]->run(channels[c], regions[c]);
- }
- }
- Parallel_extractCSER & operator=(const Parallel_extractCSER &a);
- };
- //OCR recognition is done in parallel for different detections
- template <class T>
- class Parallel_OCR: public cv::ParallelLoopBody
- {
- private:
- vector<Mat> &detections;
- vector<string> &outputs;
- vector< vector<Rect> > &boxes;
- vector< vector<string> > &words;
- vector< vector<float> > &confidences;
- vector< Ptr<T> > &ocrs;
- public:
- Parallel_OCR(vector<Mat> &_detections, vector<string> &_outputs, vector< vector<Rect> > &_boxes,
- vector< vector<string> > &_words, vector< vector<float> > &_confidences,
- vector< Ptr<T> > &_ocrs)
- : detections(_detections), outputs(_outputs), boxes(_boxes), words(_words),
- confidences(_confidences), ocrs(_ocrs)
- {}
- virtual void operator()( const cv::Range &r ) const CV_OVERRIDE
- {
- for (int c=r.start; c < r.end; c++)
- {
- ocrs[c%ocrs.size()]->run(detections[c], outputs[c], &boxes[c], &words[c], &confidences[c], OCR_LEVEL_WORD);
- }
- }
- Parallel_OCR & operator=(const Parallel_OCR &a);
- };
- //Discard wrongly recognised strings
- bool isRepetitive(const string& s);
- //Draw ER's in an image via floodFill
- void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation);
- const char* keys =
- {
- "{@input | 0 | camera index or video file name}"
- "{ image i | | specify input image}"
- };
- //Perform text detection and recognition from webcam or video
- int main(int argc, char* argv[])
- {
- CommandLineParser parser(argc, argv, keys);
- cout << "A demo program of End-to-end Scene Text Detection and Recognition using webcam or video." << endl << endl;
- cout << " Keys: " << endl;
- cout << " Press 'r' to switch between MSER/CSER regions." << endl;
- cout << " Press 'g' to switch between Horizontal and Arbitrary oriented grouping." << endl;
- cout << " Press 'o' to switch between OCRTesseract/OCRHMMDecoder recognition." << endl;
- cout << " Press 's' to scale down frame size to 320x240." << endl;
- cout << " Press 'ESC' to exit." << endl << endl;
- parser.printMessage();
- VideoCapture cap;
- Mat frame, image, gray, out_img;
- String input = parser.get<String>("@input");
- String image_file_name = parser.get<String>("image");
- if (image_file_name != "")
- {
- image = imread(image_file_name);
- if (image.empty())
- {
- cout << "\nunable to open " << image_file_name << "\nprogram terminated!\n";
- return 1;
- }
- else
- {
- cout << "\nimage " << image_file_name << " loaded!\n";
- frame = image.clone();
- }
- }
- else
- {
- cout << "\nInitializing capturing... ";
- if (input.size() == 1 && isdigit(input[0]))
- cap.open(input[0] - '0');
- else
- cap.open(input);
- if (!cap.isOpened())
- {
- cout << "\nCould not initialize capturing!\n";
- return 1;
- }
- cout << " Done!" << endl;
- cap.read(frame);
- }
- namedWindow("recognition",WINDOW_NORMAL);
- imshow("recognition", frame);
- waitKey(1);
- bool downsize = false;
- int REGION_TYPE = 1;
- int GROUPING_ALGORITHM = 0;
- int RECOGNITION = 0;
- String region_types_str[2] = {"ERStats", "MSER"};
- String grouping_algorithms_str[2] = {"exhaustive_search", "multioriented"};
- String recognitions_str[2] = {"Tesseract", "NM_chain_features + KNN"};
- vector<Mat> channels;
- vector<vector<ERStat> > regions(2); //two channels
- // Create ERFilter objects with the 1st and 2nd stage default classifiers
- // since er algorithm is not reentrant we need one filter for channel
- vector< Ptr<ERFilter> > er_filters1;
- vector< Ptr<ERFilter> > er_filters2;
- for (int i=0; i<2; i++)
- {
- Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00015f,0.13f,0.2f,true,0.1f);
- Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5);
- er_filters1.push_back(er_filter1);
- er_filters2.push_back(er_filter2);
- }
- //Initialize OCR engine (we initialize 10 instances in order to work several recognitions in parallel)
- cout << "Initializing OCR engines ... ";
- int num_ocrs = 10;
- vector< Ptr<OCRTesseract> > ocrs;
- for (int o=0; o<num_ocrs; o++)
- {
- ocrs.push_back(OCRTesseract::create());
- }
- Mat transition_p;
- string filename = "OCRHMM_transitions_table.xml";
- FileStorage fs(filename, FileStorage::READ);
- fs["transition_probabilities"] >> transition_p;
- fs.release();
- Mat emission_p = Mat::eye(62,62,CV_64FC1);
- string voc = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
- vector< Ptr<OCRHMMDecoder> > decoders;
- for (int o=0; o<num_ocrs; o++)
- {
- decoders.push_back(OCRHMMDecoder::create(loadOCRHMMClassifierNM("OCRHMM_knn_model_data.xml.gz"),
- voc, transition_p, emission_p));
- }
- cout << " Done!" << endl;
- while ( true )
- {
- double t_all = (double)getTickCount();
- if (downsize)
- resize(frame,frame,Size(320,240),0,0,INTER_LINEAR_EXACT);
- /*Text Detection*/
- cvtColor(frame,gray,COLOR_BGR2GRAY);
- // Extract channels to be processed individually
- channels.clear();
- channels.push_back(gray);
- channels.push_back(255-gray);
- regions[0].clear();
- regions[1].clear();
- switch (REGION_TYPE)
- {
- case 0: // ERStats
- parallel_for_(cv::Range(0, (int)channels.size()), Parallel_extractCSER(channels, regions, er_filters1, er_filters2));
- break;
- case 1: // MSER
- vector<vector<Point> > contours;
- vector<Rect> bboxes;
- Ptr<MSER> mser = MSER::create(21, (int)(0.00002*gray.cols*gray.rows), (int)(0.05*gray.cols*gray.rows), 1, 0.7);
- mser->detectRegions(gray, contours, bboxes);
- //Convert the output of MSER to suitable input for the grouping/recognition algorithms
- if (contours.size() > 0)
- MSERsToERStats(gray, contours, regions);
- break;
- }
- // Detect character groups
- vector< vector<Vec2i> > nm_region_groups;
- vector<Rect> nm_boxes;
- switch (GROUPING_ALGORITHM)
- {
- case 0: // exhaustive_search
- erGrouping(frame, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_HORIZ);
- break;
- case 1: //multioriented
- erGrouping(frame, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_ANY, "./trained_classifier_erGrouping.xml", 0.5);
- break;
- }
- /*Text Recognition (OCR)*/
- int bottom_bar_height= out_img.rows/7 ;
- copyMakeBorder(frame, out_img, 0, bottom_bar_height, 0, 0, BORDER_CONSTANT, Scalar(150, 150, 150));
- float scale_font = (float)(bottom_bar_height /85.0);
- vector<string> words_detection;
- float min_confidence1 = 0.f, min_confidence2 = 0.f;
- if (RECOGNITION == 0)
- {
- min_confidence1 = 51.f;
- min_confidence2 = 60.f;
- }
- vector<Mat> detections;
- for (int i=0; i<(int)nm_boxes.size(); i++)
- {
- rectangle(out_img, nm_boxes[i].tl(), nm_boxes[i].br(), Scalar(255,255,0),3);
- Mat group_img = Mat::zeros(frame.rows+2, frame.cols+2, CV_8UC1);
- er_draw(channels, regions, nm_region_groups[i], group_img);
- group_img(nm_boxes[i]).copyTo(group_img);
- copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0));
- detections.push_back(group_img);
- }
- vector<string> outputs((int)detections.size());
- vector< vector<Rect> > boxes((int)detections.size());
- vector< vector<string> > words((int)detections.size());
- vector< vector<float> > confidences((int)detections.size());
- // parallel process detections in batches of ocrs.size() (== num_ocrs)
- for (int i=0; i<(int)detections.size(); i=i+(int)num_ocrs)
- {
- Range r;
- if (i+(int)num_ocrs <= (int)detections.size())
- r = Range(i,i+(int)num_ocrs);
- else
- r = Range(i,(int)detections.size());
- switch(RECOGNITION)
- {
- case 0: // Tesseract
- parallel_for_(r, Parallel_OCR<OCRTesseract>(detections, outputs, boxes, words, confidences, ocrs));
- break;
- case 1: // NM_chain_features + KNN
- parallel_for_(r, Parallel_OCR<OCRHMMDecoder>(detections, outputs, boxes, words, confidences, decoders));
- break;
- }
- }
- for (int i=0; i<(int)detections.size(); i++)
- {
- outputs[i].erase(remove(outputs[i].begin(), outputs[i].end(), '\n'), outputs[i].end());
- //cout << "OCR output = \"" << outputs[i] << "\" length = " << outputs[i].size() << endl;
- if (outputs[i].size() < 3)
- continue;
- for (int j=0; j<(int)boxes[i].size(); j++)
- {
- boxes[i][j].x += nm_boxes[i].x-15;
- boxes[i][j].y += nm_boxes[i].y-15;
- //cout << " word = " << words[j] << "\t confidence = " << confidences[j] << endl;
- if ((words[i][j].size() < 2) || (confidences[i][j] < min_confidence1) ||
- ((words[i][j].size()==2) && (words[i][j][0] == words[i][j][1])) ||
- ((words[i][j].size()< 4) && (confidences[i][j] < min_confidence2)) ||
- isRepetitive(words[i][j]))
- continue;
- words_detection.push_back(words[i][j]);
- rectangle(out_img, boxes[i][j].tl(), boxes[i][j].br(), Scalar(255,0,255),3);
- Size word_size = getTextSize(words[i][j], FONT_HERSHEY_SIMPLEX, (double)scale_font, (int)(3*scale_font), NULL);
- rectangle(out_img, boxes[i][j].tl()-Point(3,word_size.height+3), boxes[i][j].tl()+Point(word_size.width,0), Scalar(255,0,255),-1);
- putText(out_img, words[i][j], boxes[i][j].tl()-Point(1,1), FONT_HERSHEY_SIMPLEX, scale_font, Scalar(255,255,255),(int)(3*scale_font));
- }
- }
- t_all = ((double)getTickCount() - t_all)*1000/getTickFrequency();
- int text_thickness = 1+(out_img.rows/500);
- string fps_info = format("%2.1f Fps. %dx%d", (float)(1000 / t_all), frame.cols, frame.rows);
- putText(out_img, fps_info, Point( 10,out_img.rows-5 ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0), text_thickness);
- putText(out_img, region_types_str[REGION_TYPE], Point((int)(out_img.cols*0.5), out_img.rows - (int)(bottom_bar_height / 1.5)), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0), text_thickness);
- putText(out_img, grouping_algorithms_str[GROUPING_ALGORITHM], Point((int)(out_img.cols*0.5),out_img.rows-((int)(bottom_bar_height /3)+4) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0), text_thickness);
- putText(out_img, recognitions_str[RECOGNITION], Point((int)(out_img.cols*0.5),out_img.rows-5 ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0), text_thickness);
- imshow("recognition", out_img);
- if ((image_file_name == "") && !cap.read(frame))
- {
- cout << "Capturing ended! press any key to exit." << endl;
- waitKey();
- return 0;
- }
- int key = waitKey(30); //wait for a key press
- switch (key)
- {
- case 27: //ESC
- cout << "ESC key pressed and exited." << endl;
- return 0;
- case 32: //SPACE
- imwrite("recognition_alt.jpg", out_img);
- break;
- case 103: //'g'
- GROUPING_ALGORITHM = (GROUPING_ALGORITHM+1)%2;
- cout << "Grouping switched to " << grouping_algorithms_str[GROUPING_ALGORITHM] << endl;
- break;
- case 111: //'o'
- RECOGNITION = (RECOGNITION+1)%2;
- cout << "OCR switched to " << recognitions_str[RECOGNITION] << endl;
- break;
- case 114: //'r'
- REGION_TYPE = (REGION_TYPE+1)%2;
- cout << "Regions switched to " << region_types_str[REGION_TYPE] << endl;
- break;
- case 115: //'s'
- downsize = !downsize;
- if (!image.empty())
- {
- frame = image.clone();
- }
- break;
- default:
- break;
- }
- }
- return 0;
- }
- bool isRepetitive(const string& s)
- {
- int count = 0;
- int count2 = 0;
- int count3 = 0;
- int first=(int)s[0];
- int last=(int)s[(int)s.size()-1];
- for (int i=0; i<(int)s.size(); i++)
- {
- if ((s[i] == 'i') ||
- (s[i] == 'l') ||
- (s[i] == 'I'))
- count++;
- if((int)s[i]==first)
- count2++;
- if((int)s[i]==last)
- count3++;
- }
- if ((count > ((int)s.size()+1)/2) || (count2 == (int)s.size()) || (count3 > ((int)s.size()*2)/3))
- {
- return true;
- }
- return false;
- }
- void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation)
- {
- for (int r=0; r<(int)group.size(); r++)
- {
- ERStat er = regions[group[r][0]][group[r][1]];
- if (er.parent != NULL) // deprecate the root region
- {
- int newMaskVal = 255;
- int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
- floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols),
- Scalar(255),0,Scalar(er.level),Scalar(0),flags);
- }
- }
- }
|