1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- #!/usr/bin/python
- import sys
- import os
- import cv2 as cv
- import numpy as np
- print('\ntextdetection.py')
- print(' A demo script of the Extremal Region Filter algorithm described in:')
- print(' Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012\n')
- if (len(sys.argv) < 2):
- print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n')
- quit()
- pathname = os.path.dirname(sys.argv[0])
- img = cv.imread(str(sys.argv[1]))
- # for visualization
- vis = img.copy()
- # Extract channels to be processed individually
- channels = list(cv.text.computeNMChannels(img))
- # Append negative channels to detect ER- (bright regions over dark background)
- cn = len(channels)-1
- for c in range(0,cn):
- channels.append(255-channels[c])
- # Apply the default cascade classifier to each independent channel (could be done in parallel)
- erc1 = cv.text.loadClassifierNM1('trained_classifierNM1.xml')
- er1 = cv.text.createERFilterNM1(erc1,16,0.00015,0.13,0.2,True,0.1)
- erc2 = cv.text.loadClassifierNM2('trained_classifierNM2.xml')
- er2 = cv.text.createERFilterNM2(erc2,0.5)
- print("Extracting Class Specific Extremal Regions from "+str(len(channels))+" channels ...")
- print(" (...) this may take a while (...)")
- for channel in channels:
- regions = cv.text.detectRegions(channel,er1,er2)
- rects = cv.text.erGrouping(img,channel,[r.tolist() for r in regions])
- #rects = cv.text.erGrouping(img,channel,[x.tolist() for x in regions], cv.text.ERGROUPING_ORIENTATION_ANY,'../../GSoC2014/opencv_contrib/modules/text/samples/trained_classifier_erGrouping.xml',0.5)
- #Visualization
- for rect in rects:
- cv.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (0, 0, 0), 2)
- cv.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (255, 255, 255), 1)
- #Visualization
- cv.imshow("Text detection result", vis)
- cv.waitKey(0)
|