123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- /*
- * textdetection.cpp
- *
- * A demo program of the Extremal Region Filter algorithm described in
- * Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
- *
- * Created on: Sep 23, 2013
- * Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
- */
- #include "opencv2/text.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include <vector>
- #include <iostream>
- #include <iomanip>
- using namespace std;
- using namespace cv;
- using namespace cv::text;
- void show_help_and_exit(const char *cmd);
- void groups_draw(Mat &src, vector<Rect> &groups);
- void er_show(vector<Mat> &channels, vector<vector<ERStat> > ®ions);
- int main(int argc, const char * argv[])
- {
- cout << endl << argv[0] << endl << endl;
- cout << "Demo program of the Extremal Region Filter algorithm described in " << endl;
- cout << "Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012" << endl << endl;
- if (argc < 2) show_help_and_exit(argv[0]);
- Mat src = imread(argv[1]);
- // Extract channels to be processed individually
- vector<Mat> channels;
- computeNMChannels(src, channels);
- int cn = (int)channels.size();
- // Append negative channels to detect ER- (bright regions over dark background)
- for (int c = 0; c < cn-1; c++)
- channels.push_back(255-channels[c]);
- // Create ERFilter objects with the 1st and 2nd stage default classifiers
- Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),16,0.00015f,0.13f,0.2f,true,0.1f);
- Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5);
- vector<vector<ERStat> > regions(channels.size());
- // Apply the default cascade classifier to each independent channel (could be done in parallel)
- cout << "Extracting Class Specific Extremal Regions from " << (int)channels.size() << " channels ..." << endl;
- cout << " (...) this may take a while (...)" << endl << endl;
- for (int c=0; c<(int)channels.size(); c++)
- {
- er_filter1->run(channels[c], regions[c]);
- er_filter2->run(channels[c], regions[c]);
- }
- // Detect character groups
- cout << "Grouping extracted ERs ... ";
- vector< vector<Vec2i> > region_groups;
- vector<Rect> groups_boxes;
- erGrouping(src, channels, regions, region_groups, groups_boxes, ERGROUPING_ORIENTATION_HORIZ);
- //erGrouping(src, channels, regions, region_groups, groups_boxes, ERGROUPING_ORIENTATION_ANY, "./trained_classifier_erGrouping.xml", 0.5);
- // draw groups
- groups_draw(src, groups_boxes);
- imshow("grouping",src);
- cout << "Done!" << endl << endl;
- cout << "Press 'space' to show the extracted Extremal Regions, any other key to exit." << endl << endl;
- if ((waitKey()&0xff) == ' ')
- er_show(channels,regions);
- // memory clean-up
- er_filter1.release();
- er_filter2.release();
- regions.clear();
- if (!groups_boxes.empty())
- {
- groups_boxes.clear();
- }
- }
- // helper functions
- void show_help_and_exit(const char *cmd)
- {
- cout << " Usage: " << cmd << " <input_image> " << endl;
- cout << " Default classifier files (trained_classifierNM*.xml) must be in current directory" << endl << endl;
- exit(-1);
- }
- void groups_draw(Mat &src, vector<Rect> &groups)
- {
- for (int i=(int)groups.size()-1; i>=0; i--)
- {
- if (src.type() == CV_8UC3)
- rectangle(src,groups.at(i).tl(),groups.at(i).br(),Scalar( 0, 255, 255 ), 3, 8 );
- else
- rectangle(src,groups.at(i).tl(),groups.at(i).br(),Scalar( 255 ), 3, 8 );
- }
- }
- void er_show(vector<Mat> &channels, vector<vector<ERStat> > ®ions)
- {
- for (int c=0; c<(int)channels.size(); c++)
- {
- Mat dst = Mat::zeros(channels[0].rows+2,channels[0].cols+2,CV_8UC1);
- for (int r=0; r<(int)regions[c].size(); r++)
- {
- ERStat er = regions[c][r];
- if (er.parent != NULL) // deprecate the root region
- {
- int newMaskVal = 255;
- int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
- floodFill(channels[c],dst,Point(er.pixel%channels[c].cols,er.pixel/channels[c].cols),
- Scalar(255),0,Scalar(er.level),Scalar(0),flags);
- }
- }
- char buff[20]; char *buff_ptr = buff;
- sprintf(buff, "channel %d", c);
- imshow(buff_ptr, dst);
- }
- waitKey(-1);
- }
|