123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343 |
- /*
- * textdetection.cpp
- *
- * A demo program of End-to-end Scene Text Detection and Recognition:
- * Shows the use of the Tesseract OCR API with the Extremal Region Filter algorithm described in:
- * Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
- *
- * Created on: Jul 31, 2014
- * Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
- */
- #include "opencv2/text.hpp"
- #include "opencv2/core/utility.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include <iostream>
- using namespace std;
- using namespace cv;
- using namespace cv::text;
- //Calculate edit distance between two words
- size_t edit_distance(const string& A, const string& B);
- size_t min(size_t x, size_t y, size_t z);
- bool isRepetitive(const string& s);
- bool sort_by_length(const string &a, const string &b);
- //Draw ER's in an image via floodFill
- void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation);
- //Perform text detection and recognition and evaluate results using edit distance
- int main(int argc, char* argv[])
- {
- cout << endl << argv[0] << endl << endl;
- cout << "A demo program of End-to-end Scene Text Detection and Recognition: " << endl;
- cout << "Shows the use of the Tesseract OCR API with the Extremal Region Filter algorithm described in:" << endl;
- cout << "Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012" << endl << endl;
- Mat image;
- if(argc>1)
- image = imread(argv[1]);
- else
- {
- cout << " Usage: " << argv[0] << " <input_image> [<gt_word1> ... <gt_wordN>]" << endl;
- return(0);
- }
- cout << "IMG_W=" << image.cols << endl;
- cout << "IMG_H=" << image.rows << endl;
- /*Text Detection*/
- // Extract channels to be processed individually
- vector<Mat> channels;
- Mat grey;
- cvtColor(image,grey,COLOR_RGB2GRAY);
- // Notice here we are only using grey channel, see textdetection.cpp for example with more channels
- channels.push_back(grey);
- channels.push_back(255-grey);
- double t_d = (double)getTickCount();
- // Create ERFilter objects with the 1st and 2nd stage default classifiers
- Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00015f,0.13f,0.2f,true,0.1f);
- Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5);
- vector<vector<ERStat> > regions(channels.size());
- // Apply the default cascade classifier to each independent channel (could be done in parallel)
- for (int c=0; c<(int)channels.size(); c++)
- {
- er_filter1->run(channels[c], regions[c]);
- er_filter2->run(channels[c], regions[c]);
- }
- cout << "TIME_REGION_DETECTION = " << ((double)getTickCount() - t_d)*1000/getTickFrequency() << endl;
- Mat out_img_decomposition= Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
- vector<Vec2i> tmp_group;
- for (int i=0; i<(int)regions.size(); i++)
- {
- for (int j=0; j<(int)regions[i].size();j++)
- {
- tmp_group.push_back(Vec2i(i,j));
- }
- Mat tmp= Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
- er_draw(channels, regions, tmp_group, tmp);
- if (i > 0)
- tmp = tmp / 2;
- out_img_decomposition = out_img_decomposition | tmp;
- tmp_group.clear();
- }
- double t_g = (double)getTickCount();
- // Detect character groups
- vector< vector<Vec2i> > nm_region_groups;
- vector<Rect> nm_boxes;
- erGrouping(image, channels, regions, nm_region_groups, nm_boxes,ERGROUPING_ORIENTATION_HORIZ);
- cout << "TIME_GROUPING = " << ((double)getTickCount() - t_g)*1000/getTickFrequency() << endl;
- /*Text Recognition (OCR)*/
- double t_r = (double)getTickCount();
- Ptr<OCRTesseract> ocr = OCRTesseract::create();
- cout << "TIME_OCR_INITIALIZATION = " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;
- string output;
- Mat out_img;
- Mat out_img_detection;
- Mat out_img_segmentation = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
- image.copyTo(out_img);
- image.copyTo(out_img_detection);
- float scale_img = 600.f/image.rows;
- float scale_font = (float)(2-scale_img)/1.4f;
- vector<string> words_detection;
- t_r = (double)getTickCount();
- for (int i=0; i<(int)nm_boxes.size(); i++)
- {
- rectangle(out_img_detection, nm_boxes[i].tl(), nm_boxes[i].br(), Scalar(0,255,255), 3);
- Mat group_img = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
- er_draw(channels, regions, nm_region_groups[i], group_img);
- Mat group_segmentation;
- group_img.copyTo(group_segmentation);
- //image(nm_boxes[i]).copyTo(group_img);
- group_img(nm_boxes[i]).copyTo(group_img);
- copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0));
- vector<Rect> boxes;
- vector<string> words;
- vector<float> confidences;
- ocr->run(group_img, output, &boxes, &words, &confidences, OCR_LEVEL_WORD);
- output.erase(remove(output.begin(), output.end(), '\n'), output.end());
- //cout << "OCR output = \"" << output << "\" length = " << output.size() << endl;
- if (output.size() < 3)
- continue;
- for (int j=0; j<(int)boxes.size(); j++)
- {
- boxes[j].x += nm_boxes[i].x-15;
- boxes[j].y += nm_boxes[i].y-15;
- //cout << " word = " << words[j] << "\t confidence = " << confidences[j] << endl;
- if ((words[j].size() < 2) || (confidences[j] < 51) ||
- ((words[j].size()==2) && (words[j][0] == words[j][1])) ||
- ((words[j].size()< 4) && (confidences[j] < 60)) ||
- isRepetitive(words[j]))
- continue;
- words_detection.push_back(words[j]);
- rectangle(out_img, boxes[j].tl(), boxes[j].br(), Scalar(255,0,255),3);
- Size word_size = getTextSize(words[j], FONT_HERSHEY_SIMPLEX, (double)scale_font, (int)(3*scale_font), NULL);
- rectangle(out_img, boxes[j].tl()-Point(3,word_size.height+3), boxes[j].tl()+Point(word_size.width,0), Scalar(255,0,255),-1);
- putText(out_img, words[j], boxes[j].tl()-Point(1,1), FONT_HERSHEY_SIMPLEX, scale_font, Scalar(255,255,255),(int)(3*scale_font));
- out_img_segmentation = out_img_segmentation | group_segmentation;
- }
- }
- cout << "TIME_OCR = " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;
- /* Recognition evaluation with (approximate) Hungarian matching and edit distances */
- if(argc>2)
- {
- int num_gt_characters = 0;
- vector<string> words_gt;
- for (int i=2; i<argc; i++)
- {
- string s = string(argv[i]);
- if (s.size() > 0)
- {
- words_gt.push_back(string(argv[i]));
- //cout << " GT word " << words_gt[words_gt.size()-1] << endl;
- num_gt_characters += (int)(words_gt[words_gt.size()-1].size());
- }
- }
- if (words_detection.empty())
- {
- //cout << endl << "number of characters in gt = " << num_gt_characters << endl;
- cout << "TOTAL_EDIT_DISTANCE = " << num_gt_characters << endl;
- cout << "EDIT_DISTANCE_RATIO = 1" << endl;
- }
- else
- {
- sort(words_gt.begin(),words_gt.end(),sort_by_length);
- int max_dist=0;
- vector< vector<int> > assignment_mat;
- for (int i=0; i<(int)words_gt.size(); i++)
- {
- vector<int> assignment_row(words_detection.size(),0);
- assignment_mat.push_back(assignment_row);
- for (int j=0; j<(int)words_detection.size(); j++)
- {
- assignment_mat[i][j] = (int)(edit_distance(words_gt[i],words_detection[j]));
- max_dist = max(max_dist,assignment_mat[i][j]);
- }
- }
- vector<int> words_detection_matched;
- int total_edit_distance = 0;
- int tp=0, fp=0, fn=0;
- for (int search_dist=0; search_dist<=max_dist; search_dist++)
- {
- for (int i=0; i<(int)assignment_mat.size(); i++)
- {
- int min_dist_idx = (int)distance(assignment_mat[i].begin(),
- min_element(assignment_mat[i].begin(),assignment_mat[i].end()));
- if (assignment_mat[i][min_dist_idx] == search_dist)
- {
- //cout << " GT word \"" << words_gt[i] << "\" best match \"" << words_detection[min_dist_idx] << "\" with dist " << assignment_mat[i][min_dist_idx] << endl;
- if(search_dist == 0)
- tp++;
- else { fp++; fn++; }
- total_edit_distance += assignment_mat[i][min_dist_idx];
- words_detection_matched.push_back(min_dist_idx);
- words_gt.erase(words_gt.begin()+i);
- assignment_mat.erase(assignment_mat.begin()+i);
- for (int j=0; j<(int)assignment_mat.size(); j++)
- {
- assignment_mat[j][min_dist_idx]=INT_MAX;
- }
- i--;
- }
- }
- }
- for (int j=0; j<(int)words_gt.size(); j++)
- {
- //cout << " GT word \"" << words_gt[j] << "\" no match found" << endl;
- fn++;
- total_edit_distance += (int)words_gt[j].size();
- }
- for (int j=0; j<(int)words_detection.size(); j++)
- {
- if (find(words_detection_matched.begin(),words_detection_matched.end(),j) == words_detection_matched.end())
- {
- //cout << " Detection word \"" << words_detection[j] << "\" no match found" << endl;
- fp++;
- total_edit_distance += (int)words_detection[j].size();
- }
- }
- //cout << endl << "number of characters in gt = " << num_gt_characters << endl;
- cout << "TOTAL_EDIT_DISTANCE = " << total_edit_distance << endl;
- cout << "EDIT_DISTANCE_RATIO = " << (float)total_edit_distance / num_gt_characters << endl;
- cout << "TP = " << tp << endl;
- cout << "FP = " << fp << endl;
- cout << "FN = " << fn << endl;
- }
- }
- //resize(out_img_detection,out_img_detection,Size(image.cols*scale_img,image.rows*scale_img),0,0,INTER_LINEAR_EXACT);
- //imshow("detection", out_img_detection);
- //imwrite("detection.jpg", out_img_detection);
- //resize(out_img,out_img,Size(image.cols*scale_img,image.rows*scale_img),0,0,INTER_LINEAR_EXACT);
- namedWindow("recognition",WINDOW_NORMAL);
- imshow("recognition", out_img);
- waitKey(0);
- //imwrite("recognition.jpg", out_img);
- //imwrite("segmentation.jpg", out_img_segmentation);
- //imwrite("decomposition.jpg", out_img_decomposition);
- return 0;
- }
- size_t min(size_t x, size_t y, size_t z)
- {
- return x < y ? min(x,z) : min(y,z);
- }
- size_t edit_distance(const string& A, const string& B)
- {
- size_t NA = A.size();
- size_t NB = B.size();
- vector< vector<size_t> > M(NA + 1, vector<size_t>(NB + 1));
- for (size_t a = 0; a <= NA; ++a)
- M[a][0] = a;
- for (size_t b = 0; b <= NB; ++b)
- M[0][b] = b;
- for (size_t a = 1; a <= NA; ++a)
- for (size_t b = 1; b <= NB; ++b)
- {
- size_t x = M[a-1][b] + 1;
- size_t y = M[a][b-1] + 1;
- size_t z = M[a-1][b-1] + (A[a-1] == B[b-1] ? 0 : 1);
- M[a][b] = min(x,y,z);
- }
- return M[A.size()][B.size()];
- }
- bool isRepetitive(const string& s)
- {
- int count = 0;
- for (int i=0; i<(int)s.size(); i++)
- {
- if ((s[i] == 'i') ||
- (s[i] == 'l') ||
- (s[i] == 'I'))
- count++;
- }
- if (count > ((int)s.size()+1)/2)
- {
- return true;
- }
- return false;
- }
- void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation)
- {
- for (int r=0; r<(int)group.size(); r++)
- {
- ERStat er = regions[group[r][0]][group[r][1]];
- if (er.parent != NULL) // deprecate the root region
- {
- int newMaskVal = 255;
- int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
- floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols),
- Scalar(255),0,Scalar(er.level),Scalar(0),flags);
- }
- }
- }
- bool sort_by_length(const string &a, const string &b){return (a.size()>b.size());}
|