1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- /*
- * cropped_word_recognition.cpp
- *
- * A demo program of text recognition in a given cropped word.
- * Shows the use of the OCRBeamSearchDecoder class API using the provided default classifier.
- *
- * Created on: Jul 9, 2015
- * Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
- */
- #include "opencv2/text.hpp"
- #include "opencv2/core/utility.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include <iostream>
- using namespace std;
- using namespace cv;
- using namespace cv::text;
- int main(int argc, char* argv[])
- {
- cout << endl << argv[0] << endl << endl;
- cout << "A demo program of Scene Text cropped word Recognition: " << endl;
- cout << "Shows the use of the OCRBeamSearchDecoder class using the Single Layer CNN character classifier described in:" << endl;
- cout << "Coates, Adam, et al. \"Text detection and character recognition in scene images with unsupervised feature learning.\" ICDAR 2011." << endl << endl;
- Mat image;
- if(argc>1)
- image = imread(argv[1]);
- else
- {
- cout << " Usage: " << argv[0] << " <input_image>" << endl << endl;
- return(0);
- }
- string vocabulary = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; // must have the same order as the classifier output classes
- vector<string> lexicon; // a list of words expected to be found on the input image
- lexicon.push_back(string("abb"));
- lexicon.push_back(string("riser"));
- lexicon.push_back(string("CHINA"));
- lexicon.push_back(string("HERE"));
- lexicon.push_back(string("President"));
- lexicon.push_back(string("smash"));
- lexicon.push_back(string("KUALA"));
- lexicon.push_back(string("Produkt"));
- lexicon.push_back(string("NINTENDO"));
- // Create tailored language model a small given lexicon
- Mat transition_p;
- createOCRHMMTransitionsTable(vocabulary,lexicon,transition_p);
- // An alternative would be to load the default generic language model
- // (created from ispell 42869 English words list)
- /*Mat transition_p;
- string filename = "OCRHMM_transitions_table.xml";
- FileStorage fs(filename, FileStorage::READ);
- fs["transition_probabilities"] >> transition_p;
- fs.release();*/
- Mat emission_p = Mat::eye(62,62,CV_64FC1);
- // Notice we set here a beam size of 50. This is much faster than using the default value (500).
- // 50 works well with our tiny lexicon example, but may not with larger dictionaries.
- Ptr<OCRBeamSearchDecoder> ocr = OCRBeamSearchDecoder::create(
- loadOCRBeamSearchClassifierCNN("OCRBeamSearch_CNN_model_data.xml.gz"),
- vocabulary, transition_p, emission_p, OCR_DECODER_VITERBI, 50);
- double t_r = (double)getTickCount();
- string output;
- vector<Rect> boxes;
- vector<string> words;
- vector<float> confidences;
- ocr->run(image, output, &boxes, &words, &confidences, OCR_LEVEL_WORD);
- cout << "OCR output = \"" << output << "\". Decoded in "
- << ((double)getTickCount() - t_r)*1000/getTickFrequency() << " ms." << endl << endl;
- return 0;
- }
|