123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2015, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- const string STRUCTURED_LIGHT_DIR = "structured_light";
- const string FOLDER_DATA = "data";
- /****************************************************************************************\
- * Plane test *
- \****************************************************************************************/
- class CV_PlaneTest : public cvtest::BaseTest
- {
- public:
- CV_PlaneTest();
- ~CV_PlaneTest();
- //////////////////////////////////////////////////////////////////////////////////////////////////
- // From rgbd module: since I needed the distance method of plane class, I copied the class from rgb module
- // it will be made a pull request to make Plane class public
- /** Structure defining a plane. The notations are from the second paper */
- class PlaneBase
- {
- public:
- PlaneBase(const Vec3f & m, const Vec3f &n_in, int index) :
- index_(index),
- n_(n_in),
- m_sum_(Vec3f(0, 0, 0)),
- m_(m),
- Q_(Matx33f::zeros()),
- mse_(0),
- K_(0)
- {
- UpdateD();
- }
- virtual ~PlaneBase()
- {
- }
- /** Compute the distance to the plane. This will be implemented by the children to take into account different
- * sensor models
- * @param p_j
- * @return
- */
- virtual
- float
- distance(const Vec3f& p_j) const = 0;
- /** The d coefficient in the plane equation ax+by+cz+d = 0
- * @return
- */
- inline float d() const
- {
- return d_;
- }
- /** The normal to the plane
- * @return the normal to the plane
- */
- const Vec3f &
- n() const
- {
- return n_;
- }
- /** Update the different coefficients of the plane, based on the new statistics
- */
- void UpdateParameters()
- {
- if( empty() )
- return;
- m_ = m_sum_ / K_;
- // Compute C
- Matx33f C = Q_ - m_sum_ * m_.t();
- // Compute n
- SVD svd(C);
- n_ = Vec3f(svd.vt.at<float>(2, 0), svd.vt.at<float>(2, 1), svd.vt.at<float>(2, 2));
- mse_ = svd.w.at<float>(2) / K_;
- UpdateD();
- }
- /** Update the different sum of point and sum of point*point.t()
- */
- void UpdateStatistics(const Vec3f & point, const Matx33f & Q_local)
- {
- m_sum_ += point;
- Q_ += Q_local;
- ++K_;
- }
- inline size_t empty() const
- {
- return K_ == 0;
- }
- inline int K() const
- {
- return K_;
- }
- /** The index of the plane */
- int index_;
- protected:
- /** The 4th coefficient in the plane equation ax+by+cz+d = 0 */
- float d_;
- /** Normal of the plane */
- Vec3f n_;
- private:
- inline void UpdateD()
- {
- // Hessian form (d = nc . p_plane (centroid here) + p)
- //d = -1 * n.dot (xyz_centroid);//d =-axP+byP+czP
- d_ = -m_.dot(n_);
- }
- /** The sum of the points */
- Vec3f m_sum_;
- /** The mean of the points */
- Vec3f m_;
- /** The sum of pi * pi^\top */
- Matx33f Q_;
- /** The different matrices we need to update */
- Matx33f C_;
- float mse_;
- /** the number of points that form the plane */
- int K_;
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /** Basic planar child, with no sensor error model
- */
- class Plane : public PlaneBase
- {
- public:
- Plane(const Vec3f & m, const Vec3f &n_in, int index) :
- PlaneBase(m, n_in, index)
- {
- }
- /** The computed distance is perfect in that case
- * @param p_j the point to compute its distance to
- * @return
- */
- float distance(const Vec3f& p_j) const
- {
- return std::abs(float(p_j.dot(n_) + d_));
- }
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- protected:
- void run( int );
- };
- CV_PlaneTest::CV_PlaneTest(){}
- CV_PlaneTest::~CV_PlaneTest(){}
- void CV_PlaneTest::run( int )
- {
- string folder = cvtest::TS::ptr()->get_data_path() + "/" + STRUCTURED_LIGHT_DIR + "/" + FOLDER_DATA + "/";
- structured_light::GrayCodePattern::Params params;
- params.width = 1280;
- params.height = 800;
- // Set up GraycodePattern with params
- Ptr<structured_light::GrayCodePattern> graycode = structured_light::GrayCodePattern::create( params );
- size_t numberOfPatternImages = graycode->getNumberOfPatternImages();
- FileStorage fs( folder + "calibrationParameters.yml", FileStorage::READ );
- if( !fs.isOpened() )
- {
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
- }
- FileStorage fs2( folder + "gt_plane.yml", FileStorage::READ );
- if( !fs.isOpened() )
- {
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
- }
- // Loading ground truth plane parameters
- Vec4f plane_coefficients;
- Vec3f m;
- fs2["plane_coefficients"] >> plane_coefficients;
- fs2["m"] >> m;
- // Loading calibration parameters
- Mat cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, R, T;
- fs["cam1_intrinsics"] >> cam1intrinsics;
- fs["cam2_intrinsics"] >> cam2intrinsics;
- fs["cam1_distorsion"] >> cam1distCoeffs;
- fs["cam2_distorsion"] >> cam2distCoeffs;
- fs["R"] >> R;
- fs["T"] >> T;
- // Loading white and black images
- vector<Mat> blackImages;
- vector<Mat> whiteImages;
- blackImages.resize( 2 );
- whiteImages.resize( 2 );
- whiteImages[0] = imread( folder + "pattern_cam1_im43.jpg", 0 );
- whiteImages[1] = imread( folder + "pattern_cam2_im43.jpg", 0 );
- blackImages[0] = imread( folder + "pattern_cam1_im44.jpg", 0 );
- blackImages[1] = imread( folder + "pattern_cam2_im44.jpg", 0 );
- Size imagesSize = whiteImages[0].size();
- if( ( !cam1intrinsics.data ) || ( !cam2intrinsics.data ) || ( !cam1distCoeffs.data ) || ( !cam2distCoeffs.data ) || ( !R.data )
- || ( !T.data ) || ( !whiteImages[0].data ) || ( !whiteImages[1].data ) || ( !blackImages[0].data )
- || ( !blackImages[1].data ) )
- {
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
- }
- // Computing stereo rectify parameters
- Mat R1, R2, P1, P2, Q;
- Rect validRoi[2];
- stereoRectify( cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, imagesSize, R, T, R1, R2, P1, P2, Q, 0,
- -1, imagesSize, &validRoi[0], &validRoi[1] );
- Mat map1x, map1y, map2x, map2y;
- initUndistortRectifyMap( cam1intrinsics, cam1distCoeffs, R1, P1, imagesSize, CV_32FC1, map1x, map1y );
- initUndistortRectifyMap( cam2intrinsics, cam2distCoeffs, R2, P2, imagesSize, CV_32FC1, map2x, map2y );
- vector<vector<Mat> > captured_pattern;
- captured_pattern.resize( 2 );
- captured_pattern[0].resize( numberOfPatternImages );
- captured_pattern[1].resize( numberOfPatternImages );
- // Loading and rectifying pattern images
- for( size_t i = 0; i < numberOfPatternImages; i++ )
- {
- std::ostringstream name1;
- name1 << "pattern_cam1_im" << i + 1 << ".jpg";
- captured_pattern[0][i] = imread( folder + name1.str(), 0 );
- std::ostringstream name2;
- name2 << "pattern_cam2_im" << i + 1 << ".jpg";
- captured_pattern[1][i] = imread( folder + name2.str(), 0 );
- if( (!captured_pattern[0][i].data) || (!captured_pattern[1][i].data) )
- {
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
- }
- remap( captured_pattern[0][i], captured_pattern[0][i], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- remap( captured_pattern[1][i], captured_pattern[1][i], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- }
- // Rectifying white and black images
- remap( whiteImages[0], whiteImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- remap( whiteImages[1], whiteImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- remap( blackImages[0], blackImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- remap( blackImages[1], blackImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- // Setting up threshold parameters to reconstruct only the plane in foreground
- graycode->setBlackThreshold( 55 );
- graycode->setWhiteThreshold( 10 );
- // Computing the disparity map
- Mat disparityMap;
- bool decoded = graycode->decode( captured_pattern, disparityMap, blackImages, whiteImages,
- structured_light::DECODE_3D_UNDERWORLD );
- EXPECT_TRUE( decoded );
- // Computing the point cloud
- Mat pointcloud;
- disparityMap.convertTo( disparityMap, CV_32FC1 );
- reprojectImageTo3D( disparityMap, pointcloud, Q, true, -1 );
- // from mm (unit of calibration) to m
- pointcloud = pointcloud / 1000;
- // Setting up plane with ground truth plane values
- Vec3f normal( plane_coefficients.val[0], plane_coefficients.val[1], plane_coefficients.val[2] );
- Ptr<PlaneBase> plane = Ptr<PlaneBase>( new Plane( m, normal, 0 ) );
- // Computing the distance of every point of the pointcloud from ground truth plane
- float sum_d = 0;
- int cont = 0;
- for( int i = 0; i < disparityMap.rows; i++ )
- {
- for( int j = 0; j < disparityMap.cols; j++ )
- {
- float value = disparityMap.at<float>( i, j );
- if( value != 0 )
- {
- Vec3f point = pointcloud.at<Vec3f>( i, j );
- sum_d += plane->distance( point );
- cont++;
- }
- }
- }
- sum_d /= cont;
- // test pass if the mean of points distance from ground truth plane is lower than 3 mm
- EXPECT_LE( sum_d, 0.003 );
- }
- /****************************************************************************************\
- * Test registration *
- \****************************************************************************************/
- TEST( GrayCodePattern, plane_reconstruction )
- {
- CV_PlaneTest test;
- test.safe_run();
- }
- }} // namespace
|