123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2015, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include <iostream>
- #include <opencv2/core.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/calib3d.hpp>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/structured_light.hpp>
- #include <opencv2/opencv_modules.hpp>
- // (if you did not build the opencv_viz module, you will only see the disparity images)
- #ifdef HAVE_OPENCV_VIZ
- #include <opencv2/viz.hpp>
- #endif
- using namespace std;
- using namespace cv;
- static const char* keys =
- { "{@images_list | | Image list where the captured pattern images are saved}"
- "{@calib_param_path | | Calibration_parameters }"
- "{@proj_width | | The projector width used to acquire the pattern }"
- "{@proj_height | | The projector height used to acquire the pattern}"
- "{@white_thresh | | The white threshold height (optional)}"
- "{@black_thresh | | The black threshold (optional)}" };
- static void help()
- {
- cout << "\nThis example shows how to use the \"Structured Light module\" to decode a previously acquired gray code pattern, generating a pointcloud"
- "\nCall:\n"
- "./example_structured_light_pointcloud <images_list> <calib_param_path> <proj_width> <proj_height> <white_thresh> <black_thresh>\n"
- << endl;
- }
- static bool readStringList( const string& filename, vector<string>& l )
- {
- l.resize( 0 );
- FileStorage fs( filename, FileStorage::READ );
- if( !fs.isOpened() )
- {
- cerr << "failed to open " << filename << endl;
- return false;
- }
- FileNode n = fs.getFirstTopLevelNode();
- if( n.type() != FileNode::SEQ )
- {
- cerr << "cam 1 images are not a sequence! FAIL" << endl;
- return false;
- }
- FileNodeIterator it = n.begin(), it_end = n.end();
- for( ; it != it_end; ++it )
- {
- l.push_back( ( string ) *it );
- }
- n = fs["cam2"];
- if( n.type() != FileNode::SEQ )
- {
- cerr << "cam 2 images are not a sequence! FAIL" << endl;
- return false;
- }
- it = n.begin(), it_end = n.end();
- for( ; it != it_end; ++it )
- {
- l.push_back( ( string ) *it );
- }
- if( l.size() % 2 != 0 )
- {
- cout << "Error: the image list contains odd (non-even) number of elements\n";
- return false;
- }
- return true;
- }
- int main( int argc, char** argv )
- {
- structured_light::GrayCodePattern::Params params;
- CommandLineParser parser( argc, argv, keys );
- String images_file = parser.get<String>( 0 );
- String calib_file = parser.get<String>( 1 );
- params.width = parser.get<int>( 2 );
- params.height = parser.get<int>( 3 );
- if( images_file.empty() || calib_file.empty() || params.width < 1 || params.height < 1 || argc < 5 || argc > 7 )
- {
- help();
- return -1;
- }
- // Set up GraycodePattern with params
- Ptr<structured_light::GrayCodePattern> graycode = structured_light::GrayCodePattern::create( params );
- size_t white_thresh = 0;
- size_t black_thresh = 0;
- if( argc == 7 )
- {
- // If passed, setting the white and black threshold, otherwise using default values
- white_thresh = parser.get<unsigned>( 4 );
- black_thresh = parser.get<unsigned>( 5 );
- graycode->setWhiteThreshold( white_thresh );
- graycode->setBlackThreshold( black_thresh );
- }
- vector<string> imagelist;
- bool ok = readStringList( images_file, imagelist );
- if( !ok || imagelist.empty() )
- {
- cout << "can not open " << images_file << " or the string list is empty" << endl;
- help();
- return -1;
- }
- FileStorage fs( calib_file, FileStorage::READ );
- if( !fs.isOpened() )
- {
- cout << "Failed to open Calibration Data File." << endl;
- help();
- return -1;
- }
- // Loading calibration parameters
- Mat cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, R, T;
- fs["cam1_intrinsics"] >> cam1intrinsics;
- fs["cam2_intrinsics"] >> cam2intrinsics;
- fs["cam1_distorsion"] >> cam1distCoeffs;
- fs["cam2_distorsion"] >> cam2distCoeffs;
- fs["R"] >> R;
- fs["T"] >> T;
- cout << "cam1intrinsics" << endl << cam1intrinsics << endl;
- cout << "cam1distCoeffs" << endl << cam1distCoeffs << endl;
- cout << "cam2intrinsics" << endl << cam2intrinsics << endl;
- cout << "cam2distCoeffs" << endl << cam2distCoeffs << endl;
- cout << "T" << endl << T << endl << "R" << endl << R << endl;
- if( (!R.data) || (!T.data) || (!cam1intrinsics.data) || (!cam2intrinsics.data) || (!cam1distCoeffs.data) || (!cam2distCoeffs.data) )
- {
- cout << "Failed to load cameras calibration parameters" << endl;
- help();
- return -1;
- }
- size_t numberOfPatternImages = graycode->getNumberOfPatternImages();
- vector<vector<Mat> > captured_pattern;
- captured_pattern.resize( 2 );
- captured_pattern[0].resize( numberOfPatternImages );
- captured_pattern[1].resize( numberOfPatternImages );
- Mat color = imread( imagelist[numberOfPatternImages], IMREAD_COLOR );
- Size imagesSize = color.size();
- // Stereo rectify
- cout << "Rectifying images..." << endl;
- Mat R1, R2, P1, P2, Q;
- Rect validRoi[2];
- stereoRectify( cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, imagesSize, R, T, R1, R2, P1, P2, Q, 0,
- -1, imagesSize, &validRoi[0], &validRoi[1] );
- Mat map1x, map1y, map2x, map2y;
- initUndistortRectifyMap( cam1intrinsics, cam1distCoeffs, R1, P1, imagesSize, CV_32FC1, map1x, map1y );
- initUndistortRectifyMap( cam2intrinsics, cam2distCoeffs, R2, P2, imagesSize, CV_32FC1, map2x, map2y );
- // Loading pattern images
- for( size_t i = 0; i < numberOfPatternImages; i++ )
- {
- captured_pattern[0][i] = imread( imagelist[i], IMREAD_GRAYSCALE );
- captured_pattern[1][i] = imread( imagelist[i + numberOfPatternImages + 2], IMREAD_GRAYSCALE );
- if( (!captured_pattern[0][i].data) || (!captured_pattern[1][i].data) )
- {
- cout << "Empty images" << endl;
- help();
- return -1;
- }
- remap( captured_pattern[1][i], captured_pattern[1][i], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- remap( captured_pattern[0][i], captured_pattern[0][i], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- }
- cout << "done" << endl;
- vector<Mat> blackImages;
- vector<Mat> whiteImages;
- blackImages.resize( 2 );
- whiteImages.resize( 2 );
- // Loading images (all white + all black) needed for shadows computation
- cvtColor( color, whiteImages[0], COLOR_RGB2GRAY );
- whiteImages[1] = imread( imagelist[2 * numberOfPatternImages + 2], IMREAD_GRAYSCALE );
- blackImages[0] = imread( imagelist[numberOfPatternImages + 1], IMREAD_GRAYSCALE );
- blackImages[1] = imread( imagelist[2 * numberOfPatternImages + 2 + 1], IMREAD_GRAYSCALE );
- remap( color, color, map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- remap( whiteImages[0], whiteImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- remap( whiteImages[1], whiteImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- remap( blackImages[0], blackImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- remap( blackImages[1], blackImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
- cout << endl << "Decoding pattern ..." << endl;
- Mat disparityMap;
- bool decoded = graycode->decode( captured_pattern, disparityMap, blackImages, whiteImages,
- structured_light::DECODE_3D_UNDERWORLD );
- if( decoded )
- {
- cout << endl << "pattern decoded" << endl;
- // To better visualize the result, apply a colormap to the computed disparity
- double min;
- double max;
- minMaxIdx(disparityMap, &min, &max);
- Mat cm_disp, scaledDisparityMap;
- cout << "disp min " << min << endl << "disp max " << max << endl;
- convertScaleAbs( disparityMap, scaledDisparityMap, 255 / ( max - min ) );
- applyColorMap( scaledDisparityMap, cm_disp, COLORMAP_JET );
- // Show the result
- resize( cm_disp, cm_disp, Size( 640, 480 ), 0, 0, INTER_LINEAR_EXACT );
- imshow( "cm disparity m", cm_disp );
- // Compute the point cloud
- Mat pointcloud;
- disparityMap.convertTo( disparityMap, CV_32FC1 );
- reprojectImageTo3D( disparityMap, pointcloud, Q, true, -1 );
- // Compute a mask to remove background
- Mat dst, thresholded_disp;
- threshold( scaledDisparityMap, thresholded_disp, 0, 255, THRESH_OTSU + THRESH_BINARY );
- resize( thresholded_disp, dst, Size( 640, 480 ), 0, 0, INTER_LINEAR_EXACT );
- imshow( "threshold disp otsu", dst );
- #ifdef HAVE_OPENCV_VIZ
- // Apply the mask to the point cloud
- Mat pointcloud_tresh, color_tresh;
- pointcloud.copyTo( pointcloud_tresh, thresholded_disp );
- color.copyTo( color_tresh, thresholded_disp );
- // Show the point cloud on viz
- viz::Viz3d myWindow( "Point cloud with color" );
- myWindow.setBackgroundMeshLab();
- myWindow.showWidget( "coosys", viz::WCoordinateSystem() );
- myWindow.showWidget( "pointcloud", viz::WCloud( pointcloud_tresh, color_tresh ) );
- myWindow.showWidget( "text2d", viz::WText( "Point cloud", Point(20, 20), 20, viz::Color::green() ) );
- myWindow.spin();
- #endif // HAVE_OPENCV_VIZ
- }
- waitKey();
- return 0;
- }
|