123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- #include "opencv2/stereo.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/highgui.hpp"
- #include <stdio.h>
- #include <string.h>
- #include <iostream>
- using namespace std;
- using namespace cv;
- using namespace cv::stereo;
- enum { STEREO_BINARY_BM, STEREO_BINARY_SGM };
- static bool parse_argument_values(int argc, char **argv, string &left, string &right, int &kernel_size, int &number_of_disparities,
- int &aggregation_window, int &P1, int &P2, float &scale, int &algo, int &binary_descriptor_type, int &success);
- int main(int argc, char** argv)
- {
- string left, right;
- int kernel_size = 0, number_of_disparities = 0, aggregation_window = 0, P1 = 0, P2 = 0;
- float scale = 4;
- int algo = STEREO_BINARY_BM;
- int binary_descriptor_type = 0;
- int success;
- // here we extract the values that were added as arguments
- // we also test to see if they are provided correcly
- if (!parse_argument_values(argc, argv, left, right,
- kernel_size,
- number_of_disparities,
- aggregation_window,
- P1, P2,
- scale,
- algo, binary_descriptor_type,success))
- {
- return 1;
- }
- // verify if the user inputs the correct number of parameters
- Mat image1, image2;
- // we read a pair of images from the disk
- image1 = imread(left, CV_8UC1);
- image2 = imread(right, CV_8UC1);
- // verify if they are loaded correctly
- if (image1.empty() || image2.empty())
- {
- cout << " --(!) Error reading images \n";
- return 1;
- }
- // we display the parsed parameters
- const char *b[7] = { "CV_DENSE_CENSUS", "CV_SPARSE_CENSUS", "CV_CS_CENSUS", "CV_MODIFIED_CS_CENSUS",
- "CV_MODIFIED_CENSUS_TRANSFORM", "CV_MEAN_VARIATION", "CV_STAR_KERNEL" };
- cout << "Program Name: " << argv[0];
- cout << "\nPath to left image " << left << " \n" << "Path to right image " << right << "\n";
- cout << "\nkernel size " << kernel_size << "\n"
- << "numberOfDisparities " << number_of_disparities << "\n"
- << "aggregationWindow " << aggregation_window << "\n"
- << "scallingFactor " << scale << "\n" << "Descriptor name : " << b[binary_descriptor_type] << "\n";
- Mat imgDisparity16S2 = Mat(image1.rows, image1.cols, CV_16S);
- Mat imgDisparity8U2 = Mat(image1.rows, image1.cols, CV_8UC1);
- imshow("Original Left image", image1);
- if (algo == STEREO_BINARY_BM)
- {
- Ptr<StereoBinaryBM> sbm = StereoBinaryBM::create(number_of_disparities, kernel_size);
- // we set the corresponding parameters
- sbm->setPreFilterCap(31);
- sbm->setMinDisparity(0);
- sbm->setTextureThreshold(10);
- sbm->setUniquenessRatio(0);
- sbm->setSpeckleWindowSize(400); // speckle size
- sbm->setSpeckleRange(200);
- sbm->setDisp12MaxDiff(0);
- sbm->setScalleFactor((int)scale); // the scaling factor
- sbm->setBinaryKernelType(binary_descriptor_type); // binary descriptor kernel
- sbm->setAgregationWindowSize(aggregation_window);
- // the user can choose between the average speckle removal algorithm or
- // the classical version that was implemented in OpenCV
- sbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM);
- sbm->setUsePrefilter(false);
- //-- calculate the disparity image
- sbm->compute(image1, image2, imgDisparity8U2);
- imshow("Disparity", imgDisparity8U2);
- }
- else if (algo == STEREO_BINARY_SGM)
- {
- // we set the corresponding parameters
- Ptr<StereoBinarySGBM> sgbm = StereoBinarySGBM::create(0, number_of_disparities, kernel_size);
- // setting the penalties for sgbm
- sgbm->setP1(P1);
- sgbm->setP2(P2);
- sgbm->setMinDisparity(0);
- sgbm->setUniquenessRatio(5);
- sgbm->setSpeckleWindowSize(400);
- sgbm->setSpeckleRange(0);
- sgbm->setDisp12MaxDiff(1);
- sgbm->setBinaryKernelType(binary_descriptor_type);
- sgbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM);
- sgbm->setSubPixelInterpolationMethod(CV_SIMETRICV_INTERPOLATION);
- sgbm->compute(image1, image2, imgDisparity16S2);
- /*Alternative for scalling
- imgDisparity16S2.convertTo(imgDisparity8U2, CV_8UC1, scale);
- */
- double minVal; double maxVal;
- minMaxLoc(imgDisparity16S2, &minVal, &maxVal);
- imgDisparity16S2.convertTo(imgDisparity8U2, CV_8UC1, 255 / (maxVal - minVal));
- //show the disparity image
- imshow("Windowsgm", imgDisparity8U2);
- }
- waitKey(0);
- return 0;
- }
- static bool parse_argument_values(int argc, char **argv, string &left, string &right, int &kernel_size, int &number_of_disparities,
- int &aggregation_window, int &P1, int &P2, float &scale, int &algo, int &binary_descriptor_type, int &success)
- {
- static const char* keys =
- "{ @left | | }"
- "{ @right | | }"
- "{ k kernel_size | 9 | }"
- "{ d disparity | 128 | }"
- "{ w aggregation_window | 9 | }"
- "{ P1 | 100 | }"
- "{ P2 | 1000 | }"
- "{ b binary_descriptor | 4 | Index of the descriptor type:\n 0 - CV_DENSE_CENSUS,\n 1 - CV_SPARSE_CENSUS,\n 2 - CV_CS_CENSUS,\n 3 - CV_MODIFIED_CS_CENSUS,\n 4 - CV_MODIFIED_CENSUS_TRANSFORM,\n 5 - CV_MEAN_VARIATION,\n 6 - CV_STAR_KERNEL}"
- "{ s scale | 1.01593 | }"
- "{ a algorithm | sgm | }"
- ;
- cv::CommandLineParser parser( argc, argv, keys );
- left = parser.get<string>(0);
- right = parser.get<string>(1);
- kernel_size = parser.get<int>("kernel_size");
- number_of_disparities = parser.get<int>("disparity");
- aggregation_window = parser.get<int>("aggregation_window");
- P1 = parser.get<int>("P1");
- P2 = parser.get<int>("P2");
- binary_descriptor_type = parser.get<int>("binary_descriptor");
- scale = parser.get<float>("scale");
- algo = parser.get<string>("algorithm") == "sgm" ? STEREO_BINARY_SGM : STEREO_BINARY_BM;
- parser.about("\nDemo stereo matching converting L and R images into disparity images using BM and SGBM\n");
- success = 1;
- //TEST if the provided parameters are correct
- if(binary_descriptor_type == CV_DENSE_CENSUS && kernel_size > 5)
- {
- cout << "For the dense census transform the maximum kernel size should be 5\n";
- success = 0;
- }
- if((binary_descriptor_type == CV_MEAN_VARIATION || binary_descriptor_type == CV_MODIFIED_CENSUS_TRANSFORM || binary_descriptor_type == CV_STAR_KERNEL) && kernel_size != 9)
- {
- cout <<" For Mean variation and the modified census transform the kernel size should be equal to 9\n";
- success = 0;
- }
- if((binary_descriptor_type == CV_CS_CENSUS || binary_descriptor_type == CV_MODIFIED_CS_CENSUS) && kernel_size > 7)
- {
- cout << " The kernel size should be smaller or equal to 7 for the CS census and modified center symetric census\n";
- success = 0;
- }
- if(binary_descriptor_type == CV_SPARSE_CENSUS && kernel_size > 11)
- {
- cout << "The kernel size for the sparse census must be smaller or equal to 11\n";
- success = 0;
- }
- if(number_of_disparities < 10)
- {
- cout << "Number of disparities should be greater than 10\n";
- success = 0;
- }
- if(aggregation_window < 3)
- {
- cout << "Aggregation window should be > 3";
- success = 0;
- }
- if(scale < 1)
- {
- cout << "The scale should be a positive number \n";
- success = 0;
- }
- if(P1 != 0)
- {
- if(P2 / P1 < 2)
- {
- cout << "You should probably choose a greater P2 penalty\n";
- success = 0;
- }
- }
- else
- {
- cout << " Penalties should be greater than 0\n";
- success = 0;
- }
- if (!parser.check() || !success)
- {
- parser.printMessage();
- return false;
- }
- return true;
- }
|