123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // Intel License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of Intel Corporation may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- template <typename T, typename compute>
- class ShapeBaseTest : public cvtest::BaseTest
- {
- public:
- typedef Point_<T> PointType;
- ShapeBaseTest(int _NSN, int _NP, float _CURRENT_MAX_ACCUR)
- : NSN(_NSN), NP(_NP), CURRENT_MAX_ACCUR(_CURRENT_MAX_ACCUR)
- {
- // generate file list
- vector<string> shapeNames;
- shapeNames.push_back("apple"); //ok
- shapeNames.push_back("children"); // ok
- shapeNames.push_back("device7"); // ok
- shapeNames.push_back("Heart"); // ok
- shapeNames.push_back("teddy"); // ok
- for (vector<string>::const_iterator i = shapeNames.begin(); i != shapeNames.end(); ++i)
- {
- for (int j = 0; j < NSN; ++j)
- {
- std::stringstream filename;
- filename << cvtest::TS::ptr()->get_data_path()
- << "shape/mpeg_test/" << *i << "-" << j + 1 << ".png";
- filenames.push_back(filename.str());
- }
- }
- // distance matrix
- const int totalCount = (int)filenames.size();
- distanceMat = Mat::zeros(totalCount, totalCount, CV_32F);
- }
- protected:
- void run(int)
- {
- mpegTest();
- displayMPEGResults();
- }
- vector<PointType> convertContourType(const Mat& currentQuery) const
- {
- if (currentQuery.empty()) {
- return vector<PointType>();
- }
- vector<vector<Point> > _contoursQuery;
- findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE);
- vector <PointType> contoursQuery;
- for (size_t border=0; border<_contoursQuery.size(); border++)
- {
- for (size_t p=0; p<_contoursQuery[border].size(); p++)
- {
- contoursQuery.push_back(PointType((T)_contoursQuery[border][p].x,
- (T)_contoursQuery[border][p].y));
- }
- }
- // In case actual number of points is less than n
- for (int add=(int)contoursQuery.size()-1; add<NP; add++)
- {
- contoursQuery.push_back(contoursQuery[contoursQuery.size()-add+1]); //adding dummy values
- }
- // Uniformly sampling
- cv::randShuffle(contoursQuery);
- int nStart=NP;
- vector<PointType> cont;
- for (int i=0; i<nStart; i++)
- {
- cont.push_back(contoursQuery[i]);
- }
- return cont;
- }
- void mpegTest()
- {
- // query contours (normal v flipped, h flipped) and testing contour
- vector<PointType> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting;
- // reading query and computing its properties
- for (vector<string>::const_iterator a = filenames.begin(); a != filenames.end(); ++a)
- {
- // read current image
- int aIndex = (int)(a - filenames.begin());
- Mat currentQuery = imread(*a, IMREAD_GRAYSCALE);
- Mat flippedHQuery, flippedVQuery;
- flip(currentQuery, flippedHQuery, 0);
- flip(currentQuery, flippedVQuery, 1);
- // compute border of the query and its flipped versions
- contoursQuery1=convertContourType(currentQuery);
- contoursQuery2=convertContourType(flippedHQuery);
- contoursQuery3=convertContourType(flippedVQuery);
- // compare with all the rest of the images: testing
- for (vector<string>::const_iterator b = filenames.begin(); b != filenames.end(); ++b)
- {
- int bIndex = (int)(b - filenames.begin());
- float distance = 0;
- // skip self-comparisson
- if (a != b)
- {
- // read testing image
- Mat currentTest = imread(*b, IMREAD_GRAYSCALE);
- // compute border of the testing
- contoursTesting=convertContourType(currentTest);
- // compute shape distance
- distance = cmp(contoursQuery1, contoursQuery2,
- contoursQuery3, contoursTesting);
- }
- distanceMat.at<float>(aIndex, bIndex) = distance;
- }
- }
- }
- void displayMPEGResults()
- {
- const int FIRST_MANY=2*NSN;
- int corrects=0;
- int divi=0;
- for (int row=0; row<distanceMat.rows; row++)
- {
- if (row%NSN==0) //another group
- {
- divi+=NSN;
- }
- for (int col=divi-NSN; col<divi; col++)
- {
- int nsmall=0;
- for (int i=0; i<distanceMat.cols; i++)
- {
- if (distanceMat.at<float>(row,col) > distanceMat.at<float>(row,i))
- {
- nsmall++;
- }
- }
- if (nsmall<=FIRST_MANY)
- {
- corrects++;
- }
- }
- }
- float porc = 100*float(corrects)/(NSN*distanceMat.rows);
- std::cout << "Test result: " << porc << "%" << std::endl;
- if (porc >= CURRENT_MAX_ACCUR)
- ts->set_failed_test_info(cvtest::TS::OK);
- else
- ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
- }
- protected:
- int NSN;
- int NP;
- float CURRENT_MAX_ACCUR;
- vector<string> filenames;
- Mat distanceMat;
- compute cmp;
- };
- //------------------------------------------------------------------------
- // Test Shape_SCD.regression
- //------------------------------------------------------------------------
- class computeShapeDistance_Chi
- {
- Ptr <ShapeContextDistanceExtractor> mysc;
- public:
- computeShapeDistance_Chi()
- {
- const int angularBins=12;
- const int radialBins=4;
- const float minRad=0.2f;
- const float maxRad=2;
- mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad);
- mysc->setIterations(1);
- mysc->setCostExtractor(createChiHistogramCostExtractor(30,0.15f));
- mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() );
- }
- float operator()(vector <Point2f>& query1, vector <Point2f>& query2,
- vector <Point2f>& query3, vector <Point2f>& testq)
- {
- return std::min(mysc->computeDistance(query1, testq),
- std::min(mysc->computeDistance(query2, testq),
- mysc->computeDistance(query3, testq)));
- }
- };
- TEST(Shape_SCD, regression)
- {
- const int NSN_val=5;//10;//20; //number of shapes per class
- const int NP_val=120; //number of points simplifying the contour
- const float CURRENT_MAX_ACCUR_val=95; //99% and 100% reached in several tests, 95 is fixed as minimum boundary
- ShapeBaseTest<float, computeShapeDistance_Chi> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
- test.safe_run();
- }
- //------------------------------------------------------------------------
- // Test ShapeEMD_SCD.regression
- //------------------------------------------------------------------------
- class computeShapeDistance_EMD
- {
- Ptr <ShapeContextDistanceExtractor> mysc;
- public:
- computeShapeDistance_EMD()
- {
- const int angularBins=12;
- const int radialBins=4;
- const float minRad=0.2f;
- const float maxRad=2;
- mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad);
- mysc->setIterations(1);
- mysc->setCostExtractor( createEMDL1HistogramCostExtractor() );
- mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() );
- }
- float operator()(vector <Point2f>& query1, vector <Point2f>& query2,
- vector <Point2f>& query3, vector <Point2f>& testq)
- {
- return std::min(mysc->computeDistance(query1, testq),
- std::min(mysc->computeDistance(query2, testq),
- mysc->computeDistance(query3, testq)));
- }
- };
- TEST(ShapeEMD_SCD, regression)
- {
- const int NSN_val=5;//10;//20; //number of shapes per class
- const int NP_val=100; //number of points simplifying the contour
- const float CURRENT_MAX_ACCUR_val=95; //98% and 99% reached in several tests, 95 is fixed as minimum boundary
- ShapeBaseTest<float, computeShapeDistance_EMD> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
- test.safe_run();
- }
- //------------------------------------------------------------------------
- // Test Hauss.regression
- //------------------------------------------------------------------------
- class computeShapeDistance_Haussdorf
- {
- Ptr <HausdorffDistanceExtractor> haus;
- public:
- computeShapeDistance_Haussdorf()
- {
- haus = createHausdorffDistanceExtractor();
- }
- float operator()(vector<Point> &query1, vector<Point> &query2,
- vector<Point> &query3, vector<Point> &testq)
- {
- return std::min(haus->computeDistance(query1,testq),
- std::min(haus->computeDistance(query2,testq),
- haus->computeDistance(query3,testq)));
- }
- };
- TEST(Hauss, regression)
- {
- const int NSN_val=5;//10;//20; //number of shapes per class
- const int NP_val = 180; //number of points simplifying the contour
- const float CURRENT_MAX_ACCUR_val=85; //90% and 91% reached in several tests, 85 is fixed as minimum boundary
- ShapeBaseTest<int, computeShapeDistance_Haussdorf> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
- test.safe_run();
- }
- TEST(computeDistance, regression_4976)
- {
- Mat a = imread(cvtest::findDataFile("shape/samples/1.png"), 0);
- Mat b = imread(cvtest::findDataFile("shape/samples/2.png"), 0);
- vector<vector<Point> > ca,cb;
- findContours(a, ca, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS);
- findContours(b, cb, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS);
- Ptr<HausdorffDistanceExtractor> hd = createHausdorffDistanceExtractor();
- Ptr<ShapeContextDistanceExtractor> sd = createShapeContextDistanceExtractor();
- double d1 = hd->computeDistance(ca[0],cb[0]);
- double d2 = sd->computeDistance(ca[0],cb[0]);
- EXPECT_NEAR(d1, 26.4196891785, 1e-3) << "HausdorffDistanceExtractor";
- EXPECT_NEAR(d2, 0.25804194808, 1e-3) << "ShapeContextDistanceExtractor";
- }
- }} // namespace
|