123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- /*
- * Software License Agreement (BSD License)
- *
- * Copyright (c) 2009, Willow Garage, Inc.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following
- * disclaimer in the documentation and/or other materials provided
- * with the distribution.
- * * Neither the name of Willow Garage, Inc. nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- *
- */
- #include "test_precomp.hpp"
- #include "opencv2/sfm/robust.hpp"
- namespace opencv_test { namespace {
- TEST(Sfm_robust, fundamentalFromCorrespondences8PointRobust)
- {
- double tolerance = 1e-8;
- const int n = 16;
- Mat_<double> x1(2,n);
- x1 << 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
- 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 5;
- Mat_<double> x2 = x1.clone();
- for (int i = 0; i < n; ++i)
- {
- x2(0,i) += i % 2; // Multiple horizontal disparities.
- }
- x2(0,n - 1) = 10;
- x2(1,n - 1) = 10; // The outlier has vertical disparity.
- Matx33d F;
- vector<int> inliers;
- fundamentalFromCorrespondences8PointRobust(x1, x2, 0.1, F, inliers);
- // F should be 0, 0, 0,
- // 0, 0, -1,
- // 0, 1, 0
- EXPECT_NEAR(0.0, F(0,0), tolerance);
- EXPECT_NEAR(0.0, F(0,1), tolerance);
- EXPECT_NEAR(0.0, F(0,2), tolerance);
- EXPECT_NEAR(0.0, F(1,0), tolerance);
- EXPECT_NEAR(0.0, F(1,1), tolerance);
- EXPECT_NEAR(0.0, F(2,0), tolerance);
- EXPECT_NEAR(0.0, F(2,2), tolerance);
- EXPECT_NEAR(F(1,2), -F(2,1), tolerance);
- EXPECT_EQ(n - 1, inliers.size());
- }
- TEST(Sfm_robust, fundamentalFromCorrespondences8PointRealisticNoOutliers)
- {
- double tolerance = 1e-8;
- TwoViewDataSet d;
- generateTwoViewRandomScene(d);
- Matx33d F_estimated;
- vector<int> inliers;
- fundamentalFromCorrespondences8PointRobust(d.x1, d.x2, 3.0, F_estimated, inliers);
- EXPECT_EQ(d.x1.cols, inliers.size());
- // Normalize.
- Matx33d F_gt_norm, F_estimated_norm;
- normalizeFundamental(d.F, F_gt_norm);
- normalizeFundamental(F_estimated, F_estimated_norm);
- EXPECT_MATRIX_NEAR(F_gt_norm, F_estimated_norm, tolerance);
- // Check fundamental properties.
- expectFundamentalProperties( F_estimated, d.x1, d.x2, tolerance);
- }
- TEST(Sfm_robust, fundamentalFromCorrespondences7PointRobust)
- {
- double tolerance = 1e-8;
- const int n = 16;
- Mat_<double> x1(2,n);
- x1 << 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
- 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 5;
- Mat_<double> x2 = x1.clone();
- for (int i = 0; i < n; ++i)
- {
- x2(0,i) += i % 2; // Multiple horizontal disparities.
- }
- x2(0,n - 1) = 10;
- x2(1,n - 1) = 10; // The outlier has vertical disparity.
- Matx33d F;
- vector<int> inliers;
- fundamentalFromCorrespondences7PointRobust(x1, x2, 0.1, F, inliers);
- // F should be 0, 0, 0,
- // 0, 0, -1,
- // 0, 1, 0
- EXPECT_NEAR(0.0, F(0,0), tolerance);
- EXPECT_NEAR(0.0, F(0,1), tolerance);
- EXPECT_NEAR(0.0, F(0,2), tolerance);
- EXPECT_NEAR(0.0, F(1,0), tolerance);
- EXPECT_NEAR(0.0, F(1,1), tolerance);
- EXPECT_NEAR(0.0, F(2,0), tolerance);
- EXPECT_NEAR(0.0, F(2,2), tolerance);
- EXPECT_NEAR(F(1,2), -F(2,1), tolerance);
- EXPECT_EQ(n - 1, inliers.size());
- }
- TEST(Sfm_robust, fundamentalFromCorrespondences7PointRealisticNoOutliers)
- {
- double tolerance = 1e-8;
- TwoViewDataSet d;
- generateTwoViewRandomScene(d);
- Matx33d F_estimated;
- vector<int> inliers;
- fundamentalFromCorrespondences7PointRobust(d.x1, d.x2, 3.0, F_estimated, inliers);
- EXPECT_EQ(d.x1.cols, inliers.size());
- // Normalize.
- Matx33d F_gt_norm, F_estimated_norm;
- normalizeFundamental(d.F, F_gt_norm);
- normalizeFundamental(F_estimated, F_estimated_norm);
- EXPECT_MATRIX_NEAR(F_gt_norm, F_estimated_norm, tolerance);
- // Check fundamental properties.
- expectFundamentalProperties( F_estimated, d.x1, d.x2, tolerance);
- }
- }} // namespace
|