123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705 |
- #include <opencv2/core.hpp>
- #include <opencv2/core/utility.hpp>
- #include <opencv2/imgproc/imgproc_c.h> // cvFindContours
- #include <opencv2/imgproc.hpp>
- #include <opencv2/rgbd.hpp>
- #include <opencv2/videoio.hpp>
- #include <opencv2/highgui.hpp>
- #include <iterator>
- #include <set>
- #include <cstdio>
- #include <iostream>
- // Function prototypes
- void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector<CvPoint>& chain, double f);
- std::vector<CvPoint> maskFromTemplate(const std::vector<cv::linemod::Template>& templates,
- int num_modalities, cv::Point offset, cv::Size size,
- cv::Mat& mask, cv::Mat& dst);
- void templateConvexHull(const std::vector<cv::linemod::Template>& templates,
- int num_modalities, cv::Point offset, cv::Size size,
- cv::Mat& dst);
- void drawResponse(const std::vector<cv::linemod::Template>& templates,
- int num_modalities, cv::Mat& dst, cv::Point offset, int T);
- cv::Mat displayQuantized(const cv::Mat& quantized);
- // Copy of cv_mouse from cv_utilities
- class Mouse
- {
- public:
- static void start(const std::string& a_img_name)
- {
- cv::setMouseCallback(a_img_name.c_str(), Mouse::cv_on_mouse, 0);
- }
- static int event(void)
- {
- int l_event = m_event;
- m_event = -1;
- return l_event;
- }
- static int x(void)
- {
- return m_x;
- }
- static int y(void)
- {
- return m_y;
- }
- private:
- static void cv_on_mouse(int a_event, int a_x, int a_y, int, void *)
- {
- m_event = a_event;
- m_x = a_x;
- m_y = a_y;
- }
- static int m_event;
- static int m_x;
- static int m_y;
- };
- int Mouse::m_event;
- int Mouse::m_x;
- int Mouse::m_y;
- static void help()
- {
- printf("Usage: example_rgbd_linemod [templates.yml]\n\n"
- "Place your object on a planar, featureless surface. With the mouse,\n"
- "frame it in the 'color' window and right click to learn a first template.\n"
- "Then press 'l' to enter online learning mode, and move the camera around.\n"
- "When the match score falls between 90-95%% the demo will add a new template.\n\n"
- "Keys:\n"
- "\t h -- This help page\n"
- "\t l -- Toggle online learning\n"
- "\t m -- Toggle printing match result\n"
- "\t t -- Toggle printing timings\n"
- "\t w -- Write learned templates to disk\n"
- "\t [ ] -- Adjust matching threshold: '[' down, ']' up\n"
- "\t q -- Quit\n\n");
- }
- // Adapted from cv_timer in cv_utilities
- class Timer
- {
- public:
- Timer() : start_(0), time_(0) {}
- void start()
- {
- start_ = cv::getTickCount();
- }
- void stop()
- {
- CV_Assert(start_ != 0);
- int64 end = cv::getTickCount();
- time_ += end - start_;
- start_ = 0;
- }
- double time()
- {
- double ret = time_ / cv::getTickFrequency();
- time_ = 0;
- return ret;
- }
- private:
- int64 start_, time_;
- };
- // Functions to store detector and templates in single XML/YAML file
- static cv::Ptr<cv::linemod::Detector> readLinemod(const std::string& filename)
- {
- cv::Ptr<cv::linemod::Detector> detector = cv::makePtr<cv::linemod::Detector>();
- cv::FileStorage fs(filename, cv::FileStorage::READ);
- detector->read(fs.root());
- cv::FileNode fn = fs["classes"];
- for (cv::FileNodeIterator i = fn.begin(), iend = fn.end(); i != iend; ++i)
- detector->readClass(*i);
- return detector;
- }
- static void writeLinemod(const cv::Ptr<cv::linemod::Detector>& detector, const std::string& filename)
- {
- cv::FileStorage fs(filename, cv::FileStorage::WRITE);
- detector->write(fs);
- std::vector<cv::String> ids = detector->classIds();
- fs << "classes" << "[";
- for (int i = 0; i < (int)ids.size(); ++i)
- {
- fs << "{";
- detector->writeClass(ids[i], fs);
- fs << "}"; // current class
- }
- fs << "]"; // classes
- }
- int main(int argc, char * argv[])
- {
- // Various settings and flags
- bool show_match_result = true;
- bool show_timings = false;
- bool learn_online = false;
- int num_classes = 0;
- int matching_threshold = 80;
- /// @todo Keys for changing these?
- cv::Size roi_size(200, 200);
- int learning_lower_bound = 90;
- int learning_upper_bound = 95;
- // Timers
- Timer extract_timer;
- Timer match_timer;
- // Initialize HighGUI
- help();
- cv::namedWindow("color");
- cv::namedWindow("normals");
- Mouse::start("color");
- // Initialize LINEMOD data structures
- cv::Ptr<cv::linemod::Detector> detector;
- std::string filename;
- if (argc == 1)
- {
- filename = "linemod_templates.yml";
- detector = cv::linemod::getDefaultLINEMOD();
- }
- else
- {
- detector = readLinemod(argv[1]);
- std::vector<cv::String> ids = detector->classIds();
- num_classes = detector->numClasses();
- printf("Loaded %s with %d classes and %d templates\n",
- argv[1], num_classes, detector->numTemplates());
- if (!ids.empty())
- {
- printf("Class ids:\n");
- std::copy(ids.begin(), ids.end(), std::ostream_iterator<std::string>(std::cout, "\n"));
- }
- }
- int num_modalities = (int)detector->getModalities().size();
- // Open Kinect sensor
- cv::VideoCapture capture( cv::CAP_OPENNI );
- if (!capture.isOpened())
- {
- printf("Could not open OpenNI-capable sensor\n");
- return -1;
- }
- capture.set(cv::CAP_PROP_OPENNI_REGISTRATION, 1);
- double focal_length = capture.get(cv::CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH);
- //printf("Focal length = %f\n", focal_length);
- // Main loop
- cv::Mat color, depth;
- for(;;)
- {
- // Capture next color/depth pair
- capture.grab();
- capture.retrieve(depth, cv::CAP_OPENNI_DEPTH_MAP);
- capture.retrieve(color, cv::CAP_OPENNI_BGR_IMAGE);
- std::vector<cv::Mat> sources;
- sources.push_back(color);
- sources.push_back(depth);
- cv::Mat display = color.clone();
- if (!learn_online)
- {
- cv::Point mouse(Mouse::x(), Mouse::y());
- int event = Mouse::event();
- // Compute ROI centered on current mouse location
- cv::Point roi_offset(roi_size.width / 2, roi_size.height / 2);
- cv::Point pt1 = mouse - roi_offset; // top left
- cv::Point pt2 = mouse + roi_offset; // bottom right
- if (event == cv::EVENT_RBUTTONDOWN)
- {
- // Compute object mask by subtracting the plane within the ROI
- std::vector<CvPoint> chain(4);
- chain[0] = cvPoint(pt1);
- chain[1] = cvPoint(pt2.x, pt1.y);
- chain[2] = cvPoint(pt2);
- chain[3] = cvPoint(pt1.x, pt2.y);
- cv::Mat mask;
- subtractPlane(depth, mask, chain, focal_length);
- cv::imshow("mask", mask);
- // Extract template
- std::string class_id = cv::format("class%d", num_classes);
- cv::Rect bb;
- extract_timer.start();
- int template_id = detector->addTemplate(sources, class_id, mask, &bb);
- extract_timer.stop();
- if (template_id != -1)
- {
- printf("*** Added template (id %d) for new object class %d***\n",
- template_id, num_classes);
- //printf("Extracted at (%d, %d) size %dx%d\n", bb.x, bb.y, bb.width, bb.height);
- }
- ++num_classes;
- }
- // Draw ROI for display
- cv::rectangle(display, pt1, pt2, CV_RGB(0,0,0), 3);
- cv::rectangle(display, pt1, pt2, CV_RGB(255,255,0), 1);
- }
- // Perform matching
- std::vector<cv::linemod::Match> matches;
- std::vector<cv::String> class_ids;
- std::vector<cv::Mat> quantized_images;
- match_timer.start();
- detector->match(sources, (float)matching_threshold, matches, class_ids, quantized_images);
- match_timer.stop();
- int classes_visited = 0;
- std::set<std::string> visited;
- for (int i = 0; (i < (int)matches.size()) && (classes_visited < num_classes); ++i)
- {
- cv::linemod::Match m = matches[i];
- if (visited.insert(m.class_id).second)
- {
- ++classes_visited;
- if (show_match_result)
- {
- printf("Similarity: %5.1f%%; x: %3d; y: %3d; class: %s; template: %3d\n",
- m.similarity, m.x, m.y, m.class_id.c_str(), m.template_id);
- }
- // Draw matching template
- const std::vector<cv::linemod::Template>& templates = detector->getTemplates(m.class_id, m.template_id);
- drawResponse(templates, num_modalities, display, cv::Point(m.x, m.y), detector->getT(0));
- if (learn_online == true)
- {
- /// @todo Online learning possibly broken by new gradient feature extraction,
- /// which assumes an accurate object outline.
- // Compute masks based on convex hull of matched template
- cv::Mat color_mask, depth_mask;
- std::vector<CvPoint> chain = maskFromTemplate(templates, num_modalities,
- cv::Point(m.x, m.y), color.size(),
- color_mask, display);
- subtractPlane(depth, depth_mask, chain, focal_length);
- cv::imshow("mask", depth_mask);
- // If pretty sure (but not TOO sure), add new template
- if (learning_lower_bound < m.similarity && m.similarity < learning_upper_bound)
- {
- extract_timer.start();
- int template_id = detector->addTemplate(sources, m.class_id, depth_mask);
- extract_timer.stop();
- if (template_id != -1)
- {
- printf("*** Added template (id %d) for existing object class %s***\n",
- template_id, m.class_id.c_str());
- }
- }
- }
- }
- }
- if (show_match_result && matches.empty())
- printf("No matches found...\n");
- if (show_timings)
- {
- printf("Training: %.2fs\n", extract_timer.time());
- printf("Matching: %.2fs\n", match_timer.time());
- }
- if (show_match_result || show_timings)
- printf("------------------------------------------------------------\n");
- cv::imshow("color", display);
- cv::imshow("normals", quantized_images[1]);
- cv::FileStorage fs;
- char key = (char)cv::waitKey(10);
- if( key == 'q' )
- break;
- switch (key)
- {
- case 'h':
- help();
- break;
- case 'm':
- // toggle printing match result
- show_match_result = !show_match_result;
- printf("Show match result %s\n", show_match_result ? "ON" : "OFF");
- break;
- case 't':
- // toggle printing timings
- show_timings = !show_timings;
- printf("Show timings %s\n", show_timings ? "ON" : "OFF");
- break;
- case 'l':
- // toggle online learning
- learn_online = !learn_online;
- printf("Online learning %s\n", learn_online ? "ON" : "OFF");
- break;
- case '[':
- // decrement threshold
- matching_threshold = std::max(matching_threshold - 1, -100);
- printf("New threshold: %d\n", matching_threshold);
- break;
- case ']':
- // increment threshold
- matching_threshold = std::min(matching_threshold + 1, +100);
- printf("New threshold: %d\n", matching_threshold);
- break;
- case 'w':
- // write model to disk
- writeLinemod(detector, filename);
- printf("Wrote detector and templates to %s\n", filename.c_str());
- break;
- default:
- ;
- }
- }
- return 0;
- }
- static void reprojectPoints(const std::vector<cv::Point3d>& proj, std::vector<cv::Point3d>& real, double f)
- {
- real.resize(proj.size());
- double f_inv = 1.0 / f;
- for (int i = 0; i < (int)proj.size(); ++i)
- {
- double Z = proj[i].z;
- real[i].x = (proj[i].x - 320.) * (f_inv * Z);
- real[i].y = (proj[i].y - 240.) * (f_inv * Z);
- real[i].z = Z;
- }
- }
- static void filterPlane(IplImage * ap_depth, std::vector<IplImage *> & a_masks, std::vector<CvPoint> & a_chain, double f)
- {
- const int l_num_cost_pts = 200;
- float l_thres = 4;
- IplImage * lp_mask = cvCreateImage(cvGetSize(ap_depth), IPL_DEPTH_8U, 1);
- cvSet(lp_mask, cvRealScalar(0));
- std::vector<CvPoint> l_chain_vector;
- float l_chain_length = 0;
- float * lp_seg_length = new float[a_chain.size()];
- for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
- {
- float x_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x);
- float y_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y);
- lp_seg_length[l_i] = sqrt(x_diff*x_diff + y_diff*y_diff);
- l_chain_length += lp_seg_length[l_i];
- }
- for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
- {
- if (lp_seg_length[l_i] > 0)
- {
- int l_cur_num = cvRound(l_num_cost_pts * lp_seg_length[l_i] / l_chain_length);
- float l_cur_len = lp_seg_length[l_i] / l_cur_num;
- for (int l_j = 0; l_j < l_cur_num; ++l_j)
- {
- float l_ratio = (l_cur_len * l_j / lp_seg_length[l_i]);
- CvPoint l_pts;
- l_pts.x = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x) + a_chain[l_i].x);
- l_pts.y = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y) + a_chain[l_i].y);
- l_chain_vector.push_back(l_pts);
- }
- }
- }
- std::vector<cv::Point3d> lp_src_3Dpts(l_chain_vector.size());
- for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
- {
- lp_src_3Dpts[l_i].x = l_chain_vector[l_i].x;
- lp_src_3Dpts[l_i].y = l_chain_vector[l_i].y;
- lp_src_3Dpts[l_i].z = CV_IMAGE_ELEM(ap_depth, unsigned short, cvRound(lp_src_3Dpts[l_i].y), cvRound(lp_src_3Dpts[l_i].x));
- //CV_IMAGE_ELEM(lp_mask,unsigned char,(int)lp_src_3Dpts[l_i].Y,(int)lp_src_3Dpts[l_i].X)=255;
- }
- //cv_show_image(lp_mask,"hallo2");
- reprojectPoints(lp_src_3Dpts, lp_src_3Dpts, f);
- CvMat * lp_pts = cvCreateMat((int)l_chain_vector.size(), 4, CV_32F);
- CvMat * lp_v = cvCreateMat(4, 4, CV_32F);
- CvMat * lp_w = cvCreateMat(4, 1, CV_32F);
- for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
- {
- CV_MAT_ELEM(*lp_pts, float, l_i, 0) = (float)lp_src_3Dpts[l_i].x;
- CV_MAT_ELEM(*lp_pts, float, l_i, 1) = (float)lp_src_3Dpts[l_i].y;
- CV_MAT_ELEM(*lp_pts, float, l_i, 2) = (float)lp_src_3Dpts[l_i].z;
- CV_MAT_ELEM(*lp_pts, float, l_i, 3) = 1.0f;
- }
- cvSVD(lp_pts, lp_w, 0, lp_v);
- float l_n[4] = {CV_MAT_ELEM(*lp_v, float, 0, 3),
- CV_MAT_ELEM(*lp_v, float, 1, 3),
- CV_MAT_ELEM(*lp_v, float, 2, 3),
- CV_MAT_ELEM(*lp_v, float, 3, 3)};
- float l_norm = sqrt(l_n[0] * l_n[0] + l_n[1] * l_n[1] + l_n[2] * l_n[2]);
- l_n[0] /= l_norm;
- l_n[1] /= l_norm;
- l_n[2] /= l_norm;
- l_n[3] /= l_norm;
- float l_max_dist = 0;
- for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
- {
- float l_dist = l_n[0] * CV_MAT_ELEM(*lp_pts, float, l_i, 0) +
- l_n[1] * CV_MAT_ELEM(*lp_pts, float, l_i, 1) +
- l_n[2] * CV_MAT_ELEM(*lp_pts, float, l_i, 2) +
- l_n[3] * CV_MAT_ELEM(*lp_pts, float, l_i, 3);
- if (fabs(l_dist) > l_max_dist)
- l_max_dist = l_dist;
- }
- //std::cerr << "plane: " << l_n[0] << ";" << l_n[1] << ";" << l_n[2] << ";" << l_n[3] << " maxdist: " << l_max_dist << " end" << std::endl;
- int l_minx = ap_depth->width;
- int l_miny = ap_depth->height;
- int l_maxx = 0;
- int l_maxy = 0;
- for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
- {
- l_minx = std::min(l_minx, a_chain[l_i].x);
- l_miny = std::min(l_miny, a_chain[l_i].y);
- l_maxx = std::max(l_maxx, a_chain[l_i].x);
- l_maxy = std::max(l_maxy, a_chain[l_i].y);
- }
- int l_w = l_maxx - l_minx + 1;
- int l_h = l_maxy - l_miny + 1;
- int l_nn = (int)a_chain.size();
- CvPoint * lp_chain = new CvPoint[l_nn];
- for (int l_i = 0; l_i < l_nn; ++l_i)
- lp_chain[l_i] = a_chain[l_i];
- cvFillPoly(lp_mask, &lp_chain, &l_nn, 1, cvScalar(255, 255, 255));
- delete[] lp_chain;
- //cv_show_image(lp_mask,"hallo1");
- std::vector<cv::Point3d> lp_dst_3Dpts(l_h * l_w);
- int l_ind = 0;
- for (int l_r = 0; l_r < l_h; ++l_r)
- {
- for (int l_c = 0; l_c < l_w; ++l_c)
- {
- lp_dst_3Dpts[l_ind].x = l_c + l_minx;
- lp_dst_3Dpts[l_ind].y = l_r + l_miny;
- lp_dst_3Dpts[l_ind].z = CV_IMAGE_ELEM(ap_depth, unsigned short, l_r + l_miny, l_c + l_minx);
- ++l_ind;
- }
- }
- reprojectPoints(lp_dst_3Dpts, lp_dst_3Dpts, f);
- l_ind = 0;
- for (int l_r = 0; l_r < l_h; ++l_r)
- {
- for (int l_c = 0; l_c < l_w; ++l_c)
- {
- float l_dist = (float)(l_n[0] * lp_dst_3Dpts[l_ind].x + l_n[1] * lp_dst_3Dpts[l_ind].y + lp_dst_3Dpts[l_ind].z * l_n[2] + l_n[3]);
- ++l_ind;
- if (CV_IMAGE_ELEM(lp_mask, unsigned char, l_r + l_miny, l_c + l_minx) != 0)
- {
- if (fabs(l_dist) < std::max(l_thres, (l_max_dist * 2.0f)))
- {
- for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p)
- {
- int l_col = cvRound((l_c + l_minx) / (l_p + 1.0));
- int l_row = cvRound((l_r + l_miny) / (l_p + 1.0));
- CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 0;
- }
- }
- else
- {
- for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p)
- {
- int l_col = cvRound((l_c + l_minx) / (l_p + 1.0));
- int l_row = cvRound((l_r + l_miny) / (l_p + 1.0));
- CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 255;
- }
- }
- }
- }
- }
- cvReleaseImage(&lp_mask);
- cvReleaseMat(&lp_pts);
- cvReleaseMat(&lp_w);
- cvReleaseMat(&lp_v);
- }
- void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector<CvPoint>& chain, double f)
- {
- mask = cv::Mat::zeros(depth.size(), CV_8U);
- std::vector<IplImage*> tmp;
- IplImage mask_ipl = cvIplImage(mask);
- tmp.push_back(&mask_ipl);
- IplImage depth_ipl = cvIplImage(depth);
- filterPlane(&depth_ipl, tmp, chain, f);
- }
- std::vector<CvPoint> maskFromTemplate(const std::vector<cv::linemod::Template>& templates,
- int num_modalities, cv::Point offset, cv::Size size,
- cv::Mat& mask, cv::Mat& dst)
- {
- templateConvexHull(templates, num_modalities, offset, size, mask);
- const int OFFSET = 30;
- cv::dilate(mask, mask, cv::Mat(), cv::Point(-1,-1), OFFSET);
- CvMemStorage * lp_storage = cvCreateMemStorage(0);
- CvTreeNodeIterator l_iterator;
- CvSeqReader l_reader;
- CvSeq * lp_contour = 0;
- cv::Mat mask_copy = mask.clone();
- IplImage mask_copy_ipl = cvIplImage(mask_copy);
- cvFindContours(&mask_copy_ipl, lp_storage, &lp_contour, sizeof(CvContour),
- CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
- std::vector<CvPoint> l_pts1; // to use as input to cv_primesensor::filter_plane
- cvInitTreeNodeIterator(&l_iterator, lp_contour, 1);
- while ((lp_contour = (CvSeq *)cvNextTreeNode(&l_iterator)) != 0)
- {
- CvPoint l_pt0;
- cvStartReadSeq(lp_contour, &l_reader, 0);
- CV_READ_SEQ_ELEM(l_pt0, l_reader);
- l_pts1.push_back(l_pt0);
- for (int i = 0; i < lp_contour->total; ++i)
- {
- CvPoint l_pt1;
- CV_READ_SEQ_ELEM(l_pt1, l_reader);
- /// @todo Really need dst at all? Can just as well do this outside
- cv::line(dst, l_pt0, l_pt1, CV_RGB(0, 255, 0), 2);
- l_pt0 = l_pt1;
- l_pts1.push_back(l_pt0);
- }
- }
- cvReleaseMemStorage(&lp_storage);
- return l_pts1;
- }
- // Adapted from cv_show_angles
- cv::Mat displayQuantized(const cv::Mat& quantized)
- {
- cv::Mat color(quantized.size(), CV_8UC3);
- for (int r = 0; r < quantized.rows; ++r)
- {
- const uchar* quant_r = quantized.ptr(r);
- cv::Vec3b* color_r = color.ptr<cv::Vec3b>(r);
- for (int c = 0; c < quantized.cols; ++c)
- {
- cv::Vec3b& bgr = color_r[c];
- switch (quant_r[c])
- {
- case 0: bgr[0]= 0; bgr[1]= 0; bgr[2]= 0; break;
- case 1: bgr[0]= 55; bgr[1]= 55; bgr[2]= 55; break;
- case 2: bgr[0]= 80; bgr[1]= 80; bgr[2]= 80; break;
- case 4: bgr[0]=105; bgr[1]=105; bgr[2]=105; break;
- case 8: bgr[0]=130; bgr[1]=130; bgr[2]=130; break;
- case 16: bgr[0]=155; bgr[1]=155; bgr[2]=155; break;
- case 32: bgr[0]=180; bgr[1]=180; bgr[2]=180; break;
- case 64: bgr[0]=205; bgr[1]=205; bgr[2]=205; break;
- case 128: bgr[0]=230; bgr[1]=230; bgr[2]=230; break;
- case 255: bgr[0]= 0; bgr[1]= 0; bgr[2]=255; break;
- default: bgr[0]= 0; bgr[1]=255; bgr[2]= 0; break;
- }
- }
- }
- return color;
- }
- // Adapted from cv_line_template::convex_hull
- void templateConvexHull(const std::vector<cv::linemod::Template>& templates,
- int num_modalities, cv::Point offset, cv::Size size,
- cv::Mat& dst)
- {
- std::vector<cv::Point> points;
- for (int m = 0; m < num_modalities; ++m)
- {
- for (int i = 0; i < (int)templates[m].features.size(); ++i)
- {
- cv::linemod::Feature f = templates[m].features[i];
- points.push_back(cv::Point(f.x, f.y) + offset);
- }
- }
- std::vector<cv::Point> hull;
- cv::convexHull(points, hull);
- dst = cv::Mat::zeros(size, CV_8U);
- const int hull_count = (int)hull.size();
- const cv::Point* hull_pts = &hull[0];
- cv::fillPoly(dst, &hull_pts, &hull_count, 1, cv::Scalar(255));
- }
- void drawResponse(const std::vector<cv::linemod::Template>& templates,
- int num_modalities, cv::Mat& dst, cv::Point offset, int T)
- {
- static const cv::Scalar COLORS[5] = { CV_RGB(0, 0, 255),
- CV_RGB(0, 255, 0),
- CV_RGB(255, 255, 0),
- CV_RGB(255, 140, 0),
- CV_RGB(255, 0, 0) };
- for (int m = 0; m < num_modalities; ++m)
- {
- // NOTE: Original demo recalculated max response for each feature in the TxT
- // box around it and chose the display color based on that response. Here
- // the display color just depends on the modality.
- cv::Scalar color = COLORS[m];
- for (int i = 0; i < (int)templates[m].features.size(); ++i)
- {
- cv::linemod::Feature f = templates[m].features[i];
- cv::Point pt(f.x + offset.x, f.y + offset.y);
- cv::circle(dst, pt, T / 2, color);
- }
- }
- }
|