123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- import numpy as np
- import cv2 as cv
- # aruco config
- adict = cv.aruco.Dictionary_get(cv.aruco.DICT_4X4_50)
- cv.imshow("marker", cv.aruco.drawMarker(adict, 0, 400))
- marker_len = 5
- # rapid config
- obj_points = np.float32([[-0.5, 0.5, 0], [0.5, 0.5, 0], [0.5, -0.5, 0], [-0.5, -0.5, 0]]) * marker_len
- tris = np.int32([[0, 2, 1], [0, 3, 2]]) # note CCW order for culling
- line_len = 10
- # random calibration data. your mileage may vary.
- imsize = (800, 600)
- K = cv.getDefaultNewCameraMatrix(np.diag([800, 800, 1]), imsize, True)
- # video capture
- cap = cv.VideoCapture(0)
- cap.set(cv.CAP_PROP_FRAME_WIDTH, imsize[0])
- cap.set(cv.CAP_PROP_FRAME_HEIGHT, imsize[1])
- rot, trans = None, None
- while cv.waitKey(1) != 27:
- img = cap.read()[1]
- # detection with aruco
- if rot is None:
- corners, ids = cv.aruco.detectMarkers(img, adict)[:2]
- if ids is not None:
- rvecs, tvecs = cv.aruco.estimatePoseSingleMarkers(corners, marker_len, K, None)[:2]
- rot, trans = rvecs[0].ravel(), tvecs[0].ravel()
- # tracking and refinement with rapid
- if rot is not None:
- for i in range(5): # multiple iterations
- ratio, rot, trans = cv.rapid.rapid(img, 40, line_len, obj_points, tris, K, rot, trans)[:3]
- if ratio < 0.8:
- # bad quality, force re-detect
- rot, trans = None, None
- break
- # drawing
- cv.putText(img, "detecting" if rot is None else "tracking", (0, 20), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 255))
- if rot is not None:
- cv.drawFrameAxes(img, K, None, rot, trans, marker_len)
- cv.imshow("tracking", img)
|