123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- #include <fstream>
- #include "opencv2/quality.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/ml.hpp"
- /*
- BRISQUE evaluator using TID2008
- TID2008:
- http://www.ponomarenko.info/tid2008.htm
- [1] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli,
- F. Battisti, "TID2008 - A Database for Evaluation of Full-Reference
- Visual Quality Assessment Metrics", Advances of Modern
- Radioelectronics, Vol. 10, pp. 30-45, 2009.
- [2] N. Ponomarenko, F. Battisti, K. Egiazarian, J. Astola, V. Lukin
- "Metrics performance comparison for color image database", Fourth
- international workshop on video processing and quality metrics
- for consumer electronics, Scottsdale, Arizona, USA. Jan. 14-16, 2009, 6 p.
- */
- namespace {
- // get ordinal ranks of data, fractional ranks assigned for ties. O(n^2) time complexity
- // optional binary predicate used for rank ordering of data elements, equality evaluation
- template <typename T, typename PrEqual = std::equal_to<T>, typename PrLess = std::less<T>>
- std::vector<float> rank_ordinal(const T* data, std::size_t sz, PrEqual&& eq = {}, PrLess&& lt = {})
- {
- std::vector<float> result{};
- result.resize(sz, -1);// set all ranks to -1, indicating not yet done
- int rank = 0;
- while (rank < (int)sz)
- {
- std::vector<int> els = {};
- for (int i = 0; i < (int)sz; ++i)
- {
- if (result[i] < 0)//not yet done
- {
- if (!els.empty())// already found something
- {
- if (lt(data[i], data[els[0]]))//found a smaller item, replace existing
- {
- els.clear();
- els.emplace_back(i);
- }
- else if (eq(data[i], data[els[0]]))// found a tie, add to vector
- els.emplace_back(i);
- }
- else//els.empty==no current item, add it
- els.emplace_back(i);
- }
- }
- CV_Assert(!els.empty());
- // compute, assign arithmetic mean
- const auto assigned_rank = (double)rank + (double)(els.size() - 1) / 2.;
- for (auto el : els)
- result[el] = (float)assigned_rank;
- rank += (int)els.size();
- }
- return result;
- }
- template <typename T>
- double pearson(const T* x, const T* y, std::size_t sz)
- {
- // based on https://www.geeksforgeeks.org/program-spearmans-rank-correlation/
- double sigma_x = {}, sigma_y = {}, sigma_xy = {}, sigma_xsq = {}, sigma_ysq = {};
- for (unsigned i = 0; i < sz; ++i)
- {
- sigma_x += x[i];
- sigma_y += y[i];
- sigma_xy += x[i] * y[i];
- sigma_xsq += x[i] * x[i];
- sigma_ysq += y[i] * y[i];
- }
- const double
- num = (sz * sigma_xy - sigma_x * sigma_y)
- , den = std::sqrt(((double)sz*sigma_xsq - sigma_x * sigma_x) * ((double)sz*sigma_ysq - sigma_y * sigma_y))
- ;
- return num / den;
- }
- // https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
- template <typename T>
- double spearman(const T* x, const T* y, std::size_t sz)
- {
- // convert x, y to ranked integral vectors
- const auto
- x_rank = rank_ordinal(x, sz)
- , y_rank = rank_ordinal(y, sz)
- ;
- return pearson(x_rank.data(), y_rank.data(), sz);
- }
- // returns cv::Mat of columns: { Distortion Type ID, MOS_Score, Brisque_Score }
- cv::Mat tid2008_eval(const std::string& root, cv::quality::QualityBRISQUE& alg)
- {
- const std::string
- mos_with_names_path = root + "mos_with_names.txt"
- , dist_imgs_root = root + "distorted_images/"
- ;
- cv::Mat result(0, 3, CV_32FC1);
- // distortion types we care about
- static const std::vector<int> distortion_types = {
- 10 // jpeg compression
- , 11 // jp2k compression
- , 1 // additive gaussian noise
- , 8 // gaussian blur
- };
- static const int
- num_images = 25 // [I01_ - I25_], file names
- , num_distortions = 4 // num distortions per image
- ;
- // load mos_with_names. format: { mos, fname }
- std::vector<std::pair<float, std::string>> mos_with_names = {};
- std::ifstream mos_file(mos_with_names_path, std::ios::in);
- while (true)
- {
- std::string line;
- std::getline(mos_file, line);
- if (!line.empty())
- {
- const auto space_pos = line.find(' ');
- CV_Assert(space_pos != line.npos);
- mos_with_names.emplace_back(std::make_pair(
- (float)std::atof(line.substr(0, space_pos).c_str())
- , line.substr(space_pos + 1)
- ));
- }
- if (mos_file.peek() == EOF)
- break;
- };
- // foreach image
- // foreach distortion type
- // foreach distortion level
- // distortion type id, mos value, brisque value
- for (int i = 0; i < num_images; ++i)
- {
- for (int ty = 0; ty < (int)distortion_types.size(); ++ty)
- {
- for (int dist = 1; dist <= num_distortions; ++dist)
- {
- float mos_val = 0.f;
- const std::string img_name = std::string("i")
- + (((i + 1) < 10) ? "0" : "")
- + std::to_string(i + 1)
- + "_"
- + ((distortion_types[ty] < 10) ? "0" : "")
- + std::to_string(distortion_types[ty])
- + "_"
- + std::to_string(dist)
- + ".bmp";
- // find mos
- bool found = false;
- for (const auto& val : mos_with_names)
- {
- if (val.second == img_name)
- {
- found = true;
- mos_val = val.first;
- break;
- }
- }
- CV_Assert(found);
- // do brisque
- auto img = cv::imread(dist_imgs_root + img_name);
- // typeid, mos, brisque
- cv::Mat row(1, 3, CV_32FC1);
- row.at<float>(0) = (float)distortion_types[ty];
- row.at<float>(1) = mos_val;
- row.at<float>(2) = (float)alg.compute(img)[0];
- result.push_back(row);
- }// dist
- }//ty
- }//i
- return result;
- }
- }
- inline void printHelp()
- {
- using namespace std;
- cout << " Demo of comparing BRISQUE quality assessment model against TID2008 database." << endl;
- cout << " A. Mittal, A. K. Moorthy and A. C. Bovik, 'No Reference Image Quality Assessment in the Spatial Domain'" << std::endl << std::endl;
- cout << " Usage: program <tid2008_path> <brisque_model_path> <brisque_range_path>" << endl << endl;
- }
- int main(int argc, const char * argv[])
- {
- using namespace cv::ml;
- if (argc != 4)
- {
- printHelp();
- exit(1);
- }
- std::cout << "Evaluating database at " << argv[1] << "..." << std::endl;
- const auto ptr = cv::quality::QualityBRISQUE::create(argv[2], argv[3]);
- const auto data = tid2008_eval( std::string( argv[1] ) + "/", *ptr );
- // create contiguous mats
- const auto mos = data.col(1).clone();
- const auto brisque = data.col(2).clone();
- // calc srocc
- const auto cc = spearman((const float*)mos.data, (const float*)brisque.data, data.rows);
- std::cout << "SROCC: " << cc << std::endl;
- return 0;
- }
|