123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2014, Biagio Montesano, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- class CV_BinaryDescriptorMatcherTest : public cvtest::BaseTest
- {
- public:
- CV_BinaryDescriptorMatcherTest( float _badPart ) :
- badPart( _badPart )
- {
- dmatcher = BinaryDescriptorMatcher::createBinaryDescriptorMatcher();
- }
- protected:
- static const int dim = 32;
- static const int queryDescCount = 300; // must be even number because we split train data in some cases in two
- static const int countFactor = 4; // do not change it
- const float badPart;
- virtual void run( int );
- void generateData( Mat& query, Mat& train );
- uchar invertSingleBits( uchar dividend_char, int numBits );
- void emptyDataTest();
- void matchTest( const Mat& query, const Mat& train );
- void knnMatchTest( const Mat& query, const Mat& train );
- void radiusMatchTest( const Mat& query, const Mat& train );
- std::string name;
- Ptr<BinaryDescriptorMatcher> dmatcher;
- private:
- CV_BinaryDescriptorMatcherTest& operator=( const CV_BinaryDescriptorMatcherTest& )
- {
- return *this;
- }
- };
- /* invert numBits bits in input char */
- uchar CV_BinaryDescriptorMatcherTest::invertSingleBits( uchar dividend_char, int numBits )
- {
- std::vector<int> bin_vector;
- long dividend;
- long bin_num;
- /* convert input char to a long */
- dividend = (long) dividend_char;
- /*if a 0 has been obtained, just generate a 8-bit long vector of zeros */
- if( dividend == 0 )
- bin_vector = std::vector<int>( 8, 0 );
- /* else, apply classic decimal to binary conversion */
- else
- {
- while ( dividend >= 1 )
- {
- bin_num = dividend % 2;
- dividend /= 2;
- bin_vector.push_back( bin_num );
- }
- }
- /* ensure that binary vector always has length 8 */
- if( bin_vector.size() < 8 )
- {
- std::vector<int> zeros( 8 - bin_vector.size(), 0 );
- bin_vector.insert( bin_vector.end(), zeros.begin(), zeros.end() );
- }
- /* invert numBits bits */
- for ( int index = 0; index < numBits; index++ )
- {
- if( bin_vector[index] == 0 )
- bin_vector[index] = 1;
- else
- bin_vector[index] = 0;
- }
- /* reconvert to decimal */
- uchar result = 0;
- for ( int i = (int) bin_vector.size() - 1; i >= 0; i-- )
- result += (uchar) ( bin_vector[i] * ( 1 << i ) );
- return result;
- }
- void CV_BinaryDescriptorMatcherTest::emptyDataTest()
- {
- Mat queryDescriptors, trainDescriptors, mask;
- std::vector<Mat> trainDescriptorCollection, masks;
- std::vector<DMatch> matches;
- std::vector<std::vector<DMatch> > vmatches;
- try
- {
- dmatcher->match( queryDescriptors, trainDescriptors, matches, mask );
- }
- catch ( ... )
- {
- ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- try
- {
- dmatcher->knnMatch( queryDescriptors, trainDescriptors, vmatches, 2, mask );
- }
- catch ( ... )
- {
- ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- try
- {
- dmatcher->radiusMatch( queryDescriptors, trainDescriptors, vmatches, 10.f, mask );
- }
- catch ( ... )
- {
- ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- try
- {
- dmatcher->add( trainDescriptorCollection );
- }
- catch ( ... )
- {
- ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- try
- {
- dmatcher->match( queryDescriptors, matches, masks );
- }
- catch ( ... )
- {
- ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- try
- {
- dmatcher->knnMatch( queryDescriptors, vmatches, 2, masks );
- }
- catch ( ... )
- {
- ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- try
- {
- dmatcher->radiusMatch( queryDescriptors, vmatches, 10.f, masks );
- }
- catch ( ... )
- {
- ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- }
- void CV_BinaryDescriptorMatcherTest::generateData( Mat& query, Mat& train )
- {
- RNG& rng = theRNG();
- /* Generate query descriptors randomly.
- Descriptor vector elements are binary values. */
- Mat buf( queryDescCount, dim, CV_8UC1 );
- rng.fill( buf, RNG::UNIFORM, Scalar( 0 ), Scalar( 255 ) );
- buf.convertTo( query, CV_8UC1 );
- for ( int i = 0; i < query.rows; i++ )
- {
- for ( int j = 0; j < countFactor; j++ )
- {
- train.push_back( query.row( i ) );
- int randCol = rand() % 32;
- uchar u = query.at<uchar>( i, randCol );
- uchar modified_u = invertSingleBits( u, j + 1 );
- train.at<uchar>( i * countFactor + j, randCol ) = modified_u;
- }
- }
- }
- void CV_BinaryDescriptorMatcherTest::matchTest( const Mat& query, const Mat& train )
- {
- dmatcher->clear();
- // test const version of match()
- {
- std::vector<DMatch> matches;
- dmatcher->match( query, train, matches );
- if( (int) matches.size() != queryDescCount )
- {
- ts->printf( cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- else
- {
- int badCount = 0;
- for ( size_t i = 0; i < matches.size(); i++ )
- {
- DMatch& match = matches[i];
- if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor ) || ( match.imgIdx != 0 ) )
- badCount++;
- }
- if( (float) badCount > (float) queryDescCount * badPart )
- {
- ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n",
- (float) badCount / (float) queryDescCount );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- }
- }
- // test const version of match() for the same query and test descriptors
- {
- std::vector<DMatch> matches;
- dmatcher->match( query, query, matches );
- if( (int) matches.size() != query.rows )
- {
- ts->printf( cvtest::TS::LOG, "Incorrect matches count while test match() function for the same query and test descriptors (1).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- else
- {
- for ( size_t i = 0; i < matches.size(); i++ )
- {
- DMatch& match = matches[i];
- if( match.queryIdx != (int) i || match.trainIdx != (int) i || std::abs( match.distance ) > FLT_EPSILON )
- {
- ts->printf(
- cvtest::TS::LOG,
- "Bad match (i=%d, queryIdx=%d, trainIdx=%d, distance=%f) while test match() function for the same query and test descriptors (1).\n", i,
- match.queryIdx, match.trainIdx, match.distance );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- }
- }
- }
- // test version of match() with add()
- {
- dmatcher->clear();
- std::vector<DMatch> matches;
- // make add() twice to test such case
- dmatcher->add( std::vector<Mat>( 1, train.rowRange( 0, train.rows / 2 ) ) );
- dmatcher->add( std::vector<Mat>( 1, train.rowRange( train.rows / 2, train.rows ) ) );
- // prepare masks (make first nearest match illegal)
- std::vector<Mat> masks( 2 );
- for ( int mi = 0; mi < 2; mi++ )
- masks[mi] = Mat::ones( query.rows, 1/*train.rows / 2*/, CV_8UC1 );
- dmatcher->match( query, matches, masks );
- if( (int) matches.size() != queryDescCount )
- {
- ts->printf( cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- else
- {
- int badCount = 0;
- for ( size_t i = 0; i < matches.size(); i++ )
- {
- DMatch& match = matches[i];
- if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor /*+ shift*/) || ( match.imgIdx > 1 ) )
- badCount++;
- }
- if( (float) badCount > (float) queryDescCount * badPart )
- {
- ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n",
- (float) badCount / (float) queryDescCount );
- ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
- }
- }
- }
- }
- void CV_BinaryDescriptorMatcherTest::knnMatchTest( const Mat& query, const Mat& train )
- {
- dmatcher->clear();
- // test const version of knnMatch()
- {
- const int knn = 3;
- std::vector<std::vector<DMatch> > matches;
- dmatcher->knnMatch( query, train, matches, knn );
- if( (int) matches.size() != queryDescCount )
- {
- ts->printf( cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- else
- {
- int badCount = 0;
- for ( size_t i = 0; i < matches.size(); i++ )
- {
- if( (int) matches[i].size() != knn )
- badCount++;
- else
- {
- int localBadCount = 0;
- for ( int k = 0; k < knn; k++ )
- {
- DMatch& match = matches[i][k];
- if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 0 ) )
- localBadCount++;
- }
- badCount += localBadCount > 0 ? 1 : 0;
- }
- }
- if( (float) badCount > (float) queryDescCount * badPart )
- {
- ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n",
- (float) badCount / (float) queryDescCount );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- }
- }
- // // test version of knnMatch() with add()
- {
- const int knn = 2;
- std::vector<std::vector<DMatch> > matches;
- // make add() twice to test such case
- dmatcher->add( std::vector<Mat>( 1, train.rowRange( 0, train.rows / 2 ) ) );
- dmatcher->add( std::vector<Mat>( 1, train.rowRange( train.rows / 2, train.rows ) ) );
- // prepare masks (make first nearest match illegal)
- std::vector<Mat> masks( 2 );
- for ( int mi = 0; mi < 2; mi++ )
- {
- masks[mi] = Mat::ones( query.rows, 1, CV_8UC1 );
- }
- dmatcher->knnMatch( query, matches, knn, masks );
- if( (int) matches.size() != queryDescCount )
- {
- ts->printf( cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- else
- {
- int badCount = 0;
- for ( size_t i = 0; i < matches.size(); i++ )
- {
- if( (int) matches[i].size() != knn )
- badCount++;
- else
- {
- int localBadCount = 0;
- for ( int k = 0; k < knn; k++ )
- {
- DMatch& match = matches[i][k];
- {
- if( i < queryDescCount / 2 )
- {
- if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 0 ) )
- localBadCount++;
- }
- else
- {
- if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 1 ) )
- localBadCount++;
- }
- }
- }
- badCount += localBadCount > 0 ? 1 : 0;
- }
- }
- if( (float) badCount > (float) queryDescCount * badPart )
- {
- ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n",
- (float) badCount / (float) queryDescCount );
- ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
- }
- }
- }
- }
- void CV_BinaryDescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& train )
- {
- dmatcher->clear();
- // test const version of match()
- {
- const float radius = 1;
- std::vector<std::vector<DMatch> > matches;
- dmatcher->radiusMatch( query, train, matches, radius );
- if( (int) matches.size() != queryDescCount )
- {
- ts->printf( cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- else
- {
- int badCount = 0;
- for ( size_t i = 0; i < matches.size(); i++ )
- {
- if( (int) matches[i].size() != 1 )
- {
- badCount++;
- }
- else
- {
- DMatch& match = matches[i][0];
- if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor ) || ( match.imgIdx != 0 ) )
- badCount++;
- }
- }
- if( (float) badCount > (float) queryDescCount * badPart )
- {
- ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n",
- (float) badCount / (float) queryDescCount );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- }
- }
- {
- const float radius = 3;
- std::vector<std::vector<DMatch> > matches;
- // make add() twice to test such case
- dmatcher->add( std::vector<Mat>( 1, train.rowRange( 0, train.rows / 2 ) ) );
- dmatcher->add( std::vector<Mat>( 1, train.rowRange( train.rows / 2, train.rows ) ) );
- // prepare masks
- std::vector<Mat> masks( 2 );
- for ( int mi = 0; mi < 2; mi++ )
- masks[mi] = Mat::ones( query.rows, 1, CV_8UC1 );
- dmatcher->radiusMatch( query, matches, radius, masks );
- //int curRes = cvtest::TS::OK;
- if( (int) matches.size() != queryDescCount )
- {
- ts->printf( cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- }
- int badCount = 0;
- for ( size_t i = 0; i < matches.size(); i++ )
- {
- if( (int) matches[i].size() != radius )
- badCount++;
- else
- {
- int localBadCount = 0;
- for ( int k = 0; k < radius; k++ )
- {
- DMatch& match = matches[i][k];
- {
- if( i < queryDescCount / 2 )
- {
- if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 0 ) )
- localBadCount++;
- }
- else
- {
- if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 1 ) )
- localBadCount++;
- }
- }
- }
- badCount += localBadCount > 0 ? 1 : 0;
- }
- }
- if( (float) badCount > (float) queryDescCount * badPart )
- {
- //curRes = cvtest::TS::FAIL_INVALID_OUTPUT;
- ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n",
- (float) badCount / (float) queryDescCount );
- ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
- }
- }
- }
- void CV_BinaryDescriptorMatcherTest::run( int )
- {
- Mat query, train;
- emptyDataTest();
- generateData( query, train );
- matchTest( query, train );
- knnMatchTest( query, train );
- radiusMatchTest( query, train );
- }
- /****************************************************************************************\
- * Tests registrations *
- \****************************************************************************************/
- TEST( BinaryDescriptor_Matcher, regression)
- {
- CV_BinaryDescriptorMatcherTest test( 0.01f );
- test.safe_run();
- }
- }} // namespace
|