123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- #include "opencv2/face.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/objdetect.hpp"
- #include "opencv2/imgproc.hpp"
- #include <iostream>
- #include <vector>
- #include <string>
- using namespace std;
- using namespace cv;
- using namespace cv::face;
- static bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade)
- {
- Mat gray;
- if (image.channels() > 1)
- cvtColor(image, gray, COLOR_BGR2GRAY);
- else
- gray = image.getMat().clone();
- equalizeHist(gray, gray);
- std::vector<Rect> faces_;
- face_cascade->detectMultiScale(gray, faces_, 1.4, 2, CASCADE_SCALE_IMAGE, Size(30, 30));
- Mat(faces_).copyTo(faces);
- return true;
- }
- int main(int argc,char** argv){
- //Give the path to the directory containing all the files containing data
- CommandLineParser parser(argc, argv,
- "{ help h usage ? | | give the following arguments in following format }"
- "{ annotations a |. | (required) path to annotations txt file [example - /data/annotations.txt] }"
- "{ config c | | (required) path to configuration xml file containing parameters for training.[ example - /data/config.xml] }"
- "{ model m | | (required) path to configuration xml file containing parameters for training.[ example - /data/model.dat] }"
- "{ width w | 460 | The width which you want all images to get to scale the annotations. large images are slow to process [default = 460] }"
- "{ height h | 460 | The height which you want all images to get to scale the annotations. large images are slow to process [default = 460] }"
- "{ face_cascade f | | Path to the face cascade xml file which you want to use as a detector}"
- );
- //Read in the input arguments
- if (parser.has("help")){
- parser.printMessage();
- cerr << "TIP: Use absolute paths to avoid any problems with the software!" << endl;
- return 0;
- }
- string directory(parser.get<string>("annotations"));
- //default initialisation
- Size scale(460,460);
- scale = Size(parser.get<int>("width"),parser.get<int>("height"));
- if (directory.empty()){
- parser.printMessage();
- cerr << "The name of the directory from which annotations have to be found is empty" << endl;
- return -1;
- }
- string configfile_name(parser.get<string>("config"));
- if (configfile_name.empty()){
- parser.printMessage();
- cerr << "No configuration file name found which contains the parameters for training" << endl;
- return -1;
- }
- string modelfile_name(parser.get<string>("model"));
- if (modelfile_name.empty()){
- parser.printMessage();
- cerr << "No name for the model_file found in which the trained model has to be saved" << endl;
- return -1;
- }
- string cascade_name(parser.get<string>("face_cascade"));
- if (cascade_name.empty()){
- parser.printMessage();
- cerr << "The name of the cascade classifier to be loaded to detect faces is not found" << endl;
- return -1;
- }
- //create a vector to store names of files in which annotations
- //and image names are found
- /*The format of the file containing annotations should be of following format
- /data/abc/abc.jpg
- 123.45,345.65
- 321.67,543.89
- The above format is similar to HELEN dataset which is used for training model
- */
- vector<String> filenames;
- //reading the files from the given directory
- glob(directory + "*.txt",filenames);
- //create a pointer to call the base class
- //pass the face cascade xml file which you want to pass as a detector
- CascadeClassifier face_cascade;
- face_cascade.load(cascade_name);
- FacemarkKazemi::Params params;
- params.configfile = configfile_name;
- Ptr<FacemarkKazemi> facemark = FacemarkKazemi::create(params);
- facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
- //create a vector to store image names
- vector<String> imagenames;
- //create object to get landmarks
- vector< vector<Point2f> > trainlandmarks,Trainlandmarks;
- //gets landmarks and corresponding image names in both the vectors
- //vector to store images
- vector<Mat> trainimages;
- loadTrainingData(filenames,trainlandmarks,imagenames);
- for(unsigned long i=0;i<300;i++){
- string imgname = imagenames[i].substr(0, imagenames[i].size()-1);
- string img = directory + string(imgname) + ".jpg";
- Mat src = imread(img);
- if(src.empty()){
- cerr<<string("Image "+img+" not found\n.")<<endl;
- continue;
- }
- trainimages.push_back(src);
- Trainlandmarks.push_back(trainlandmarks[i]);
- }
- cout<<"Got data"<<endl;
- facemark->training(trainimages,Trainlandmarks,configfile_name,scale,modelfile_name);
- cout<<"Training complete"<<endl;
- return 0;
- }
|