123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153 |
- /*
- * Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
- * Released to public domain under terms of the BSD Simplified license.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of the organization nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * See <http://www.opensource.org/licenses/bsd-license>
- */
- #include "opencv2/core.hpp"
- #include "opencv2/face.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/objdetect.hpp"
- #include <iostream>
- #include <fstream>
- #include <sstream>
- using namespace cv;
- using namespace cv::face;
- using namespace std;
- static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
- std::ifstream file(filename.c_str(), ifstream::in);
- if (!file) {
- string error_message = "No valid input file was given, please check the given filename.";
- CV_Error(Error::StsBadArg, error_message);
- }
- string line, path, classlabel;
- while (getline(file, line)) {
- stringstream liness(line);
- getline(liness, path, separator);
- getline(liness, classlabel);
- if(!path.empty() && !classlabel.empty()) {
- images.push_back(imread(path, 0));
- labels.push_back(atoi(classlabel.c_str()));
- }
- }
- }
- int main(int argc, const char *argv[]) {
- // Check for valid command line arguments, print usage
- // if no arguments were given.
- if (argc != 4) {
- cout << "usage: " << argv[0] << " </path/to/haar_cascade> </path/to/csv.ext> </path/to/device id>" << endl;
- cout << "\t </path/to/haar_cascade> -- Path to the Haar Cascade for face detection." << endl;
- cout << "\t </path/to/csv.ext> -- Path to the CSV file with the face database." << endl;
- cout << "\t <device id> -- The webcam device id to grab frames from." << endl;
- exit(1);
- }
- // Get the path to your CSV:
- string fn_haar = string(argv[1]);
- string fn_csv = string(argv[2]);
- int deviceId = atoi(argv[3]);
- // These vectors hold the images and corresponding labels:
- vector<Mat> images;
- vector<int> labels;
- // Read in the data (fails if no valid input filename is given, but you'll get an error message):
- try {
- read_csv(fn_csv, images, labels);
- } catch (const cv::Exception& e) {
- cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
- // nothing more we can do
- exit(1);
- }
- // Get the height from the first image. We'll need this
- // later in code to reshape the images to their original
- // size AND we need to reshape incoming faces to this size:
- int im_width = images[0].cols;
- int im_height = images[0].rows;
- // Create a FaceRecognizer and train it on the given images:
- Ptr<FisherFaceRecognizer> model = FisherFaceRecognizer::create();
- model->train(images, labels);
- // That's it for learning the Face Recognition model. You now
- // need to create the classifier for the task of Face Detection.
- // We are going to use the haar cascade you have specified in the
- // command line arguments:
- //
- CascadeClassifier haar_cascade;
- haar_cascade.load(fn_haar);
- // Get a handle to the Video device:
- VideoCapture cap(deviceId);
- // Check if we can use this device at all:
- if(!cap.isOpened()) {
- cerr << "Capture Device ID " << deviceId << "cannot be opened." << endl;
- return -1;
- }
- // Holds the current frame from the Video device:
- Mat frame;
- for(;;) {
- cap >> frame;
- // Clone the current frame:
- Mat original = frame.clone();
- // Convert the current frame to grayscale:
- Mat gray;
- cvtColor(original, gray, COLOR_BGR2GRAY);
- // Find the faces in the frame:
- vector< Rect_<int> > faces;
- haar_cascade.detectMultiScale(gray, faces);
- // At this point you have the position of the faces in
- // faces. Now we'll get the faces, make a prediction and
- // annotate it in the video. Cool or what?
- for(size_t i = 0; i < faces.size(); i++) {
- // Process face by face:
- Rect face_i = faces[i];
- // Crop the face from the image. So simple with OpenCV C++:
- Mat face = gray(face_i);
- // Resizing the face is necessary for Eigenfaces and Fisherfaces. You can easily
- // verify this, by reading through the face recognition tutorial coming with OpenCV.
- // Resizing IS NOT NEEDED for Local Binary Patterns Histograms, so preparing the
- // input data really depends on the algorithm used.
- //
- // I strongly encourage you to play around with the algorithms. See which work best
- // in your scenario, LBPH should always be a contender for robust face recognition.
- //
- // Since I am showing the Fisherfaces algorithm here, I also show how to resize the
- // face you have just found:
- Mat face_resized;
- cv::resize(face, face_resized, Size(im_width, im_height), 1.0, 1.0, INTER_CUBIC);
- // Now perform the prediction, see how easy that is:
- int prediction = model->predict(face_resized);
- // And finally write all we've found out to the original image!
- // First of all draw a green rectangle around the detected face:
- rectangle(original, face_i, Scalar(0, 255,0), 1);
- // Create the text we will annotate the box with:
- string box_text = format("Prediction = %d", prediction);
- // Calculate the position for annotated text (make sure we don't
- // put illegal values in there):
- int pos_x = std::max(face_i.tl().x - 10, 0);
- int pos_y = std::max(face_i.tl().y - 10, 0);
- // And now put it into the image:
- putText(original, box_text, Point(pos_x, pos_y), FONT_HERSHEY_PLAIN, 1.0, Scalar(0,255,0), 2);
- }
- // Show the result:
- imshow("face_recognizer", original);
- // And display it:
- char key = (char) waitKey(20);
- // Exit this loop on escape:
- if(key == 27)
- break;
- }
- return 0;
- }
|