123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- /*
- * Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
- * Released to public domain under terms of the BSD Simplified license.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of the organization nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * See <http://www.opensource.org/licenses/bsd-license>
- */
- #include "opencv2/core.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/face.hpp"
- #include "opencv2/core/utility.hpp"
- #include <iostream>
- #include <fstream>
- #include <sstream>
- #include <map>
- using namespace cv;
- using namespace cv::face;
- using namespace std;
- static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, std::map<int, string>& labelsInfo, char separator = ';') {
- ifstream csv(filename.c_str());
- if (!csv) CV_Error(Error::StsBadArg, "No valid input file was given, please check the given filename.");
- string line, path, classlabel, info;
- while (getline(csv, line)) {
- stringstream liness(line);
- path.clear(); classlabel.clear(); info.clear();
- getline(liness, path, separator);
- getline(liness, classlabel, separator);
- getline(liness, info, separator);
- if(!path.empty() && !classlabel.empty()) {
- cout << "Processing " << path << endl;
- int label = atoi(classlabel.c_str());
- if(!info.empty())
- labelsInfo.insert(std::make_pair(label, info));
- // 'path' can be file, dir or wildcard path
- String root(path.c_str());
- vector<String> files;
- glob(root, files, true);
- for(vector<String>::const_iterator f = files.begin(); f != files.end(); ++f) {
- cout << "\t" << *f << endl;
- Mat img = imread(*f, IMREAD_GRAYSCALE);
- static int w=-1, h=-1;
- static bool showSmallSizeWarning = true;
- if(w>0 && h>0 && (w!=img.cols || h!=img.rows)) cout << "\t* Warning: images should be of the same size!" << endl;
- if(showSmallSizeWarning && (img.cols<50 || img.rows<50)) {
- cout << "* Warning: for better results images should be not smaller than 50x50!" << endl;
- showSmallSizeWarning = false;
- }
- images.push_back(img);
- labels.push_back(label);
- }
- }
- }
- }
- int main(int argc, const char *argv[]) {
- // Check for valid command line arguments, print usage
- // if no arguments were given.
- if (argc != 2 && argc != 3) {
- cout << "Usage: " << argv[0] << " <csv> [arg2]\n"
- << "\t<csv> - path to config file in CSV format\n"
- << "\targ2 - if the 2nd argument is provided (with any value) "
- << "the advanced stuff is run and shown to console.\n"
- << "The CSV config file consists of the following lines:\n"
- << "<path>;<label>[;<comment>]\n"
- << "\t<path> - file, dir or wildcard path\n"
- << "\t<label> - non-negative integer person label\n"
- << "\t<comment> - optional comment string (e.g. person name)"
- << endl;
- exit(1);
- }
- // Get the path to your CSV.
- string fn_csv = string(argv[1]);
- // These vectors hold the images and corresponding labels.
- vector<Mat> images;
- vector<int> labels;
- std::map<int, string> labelsInfo;
- // Read in the data. This can fail if no valid
- // input filename is given.
- try {
- read_csv(fn_csv, images, labels, labelsInfo);
- } catch (const cv::Exception& e) {
- cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
- // nothing more we can do
- exit(1);
- }
- // Quit if there are not enough images for this demo.
- if(images.size() <= 1) {
- string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
- CV_Error(Error::StsError, error_message);
- }
- // The following lines simply get the last images from
- // your dataset and remove it from the vector. This is
- // done, so that the training data (which we learn the
- // cv::FaceRecognizer on) and the test data we test
- // the model with, do not overlap.
- Mat testSample = images[images.size() - 1];
- int nlabels = (int)labels.size();
- int testLabel = labels[nlabels-1];
- images.pop_back();
- labels.pop_back();
- // The following lines create an Eigenfaces model for
- // face recognition and train it with the images and
- // labels read from the given CSV file.
- // This here is a full PCA, if you just want to keep
- // 10 principal components (read Eigenfaces), then call
- // the factory method like this:
- //
- // EigenFaceRecognizer::create(10);
- //
- // If you want to create a FaceRecognizer with a
- // confidennce threshold, call it with:
- //
- // EigenFaceRecognizer::create(10, 123.0);
- //
- Ptr<EigenFaceRecognizer> model = EigenFaceRecognizer::create();
- for( int i = 0; i < nlabels; i++ )
- model->setLabelInfo(i, labelsInfo[i]);
- model->train(images, labels);
- string saveModelPath = "face-rec-model.txt";
- cout << "Saving the trained model to " << saveModelPath << endl;
- model->save(saveModelPath);
- // The following line predicts the label of a given
- // test image:
- int predictedLabel = model->predict(testSample);
- //
- // To get the confidence of a prediction call the model with:
- //
- // int predictedLabel = -1;
- // double confidence = 0.0;
- // model->predict(testSample, predictedLabel, confidence);
- //
- string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
- cout << result_message << endl;
- if( (predictedLabel == testLabel) && !model->getLabelInfo(predictedLabel).empty() )
- cout << format("%d-th label's info: %s", predictedLabel, model->getLabelInfo(predictedLabel).c_str()) << endl;
- // advanced stuff
- if(argc>2) {
- // Sometimes you'll need to get/set internal model data,
- // which isn't exposed by the public cv::FaceRecognizer.
- // Since each cv::FaceRecognizer is derived from a
- // cv::Algorithm, you can query the data.
- //
- // First we'll use it to set the threshold of the FaceRecognizer
- // to 0.0 without retraining the model. This can be useful if
- // you are evaluating the model:
- //
- model->setThreshold(0.0);
- // Now the threshold of this model is set to 0.0. A prediction
- // now returns -1, as it's impossible to have a distance below
- // it
- predictedLabel = model->predict(testSample);
- cout << "Predicted class = " << predictedLabel << endl;
- // Here is how to get the eigenvalues of this Eigenfaces model:
- Mat eigenvalues = model->getEigenValues();
- // And we can do the same to display the Eigenvectors (read Eigenfaces):
- Mat W = model->getEigenVectors();
- // From this we will display the (at most) first 10 Eigenfaces:
- for (int i = 0; i < min(10, W.cols); i++) {
- string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
- cout << msg << endl;
- // get eigenvector #i
- Mat ev = W.col(i).clone();
- // Reshape to original size & normalize to [0...255] for imshow.
- Mat grayscale;
- normalize(ev.reshape(1), grayscale, 0, 255, NORM_MINMAX, CV_8UC1);
- // Show the image & apply a Jet colormap for better sensing.
- Mat cgrayscale;
- applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
- imshow(format("%d", i), cgrayscale);
- }
- waitKey(0);
- }
- return 0;
- }
|