123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- /*
- By downloading, copying, installing or using the software you agree to this
- license. If you do not agree to this license, do not download, install,
- copy or use the software.
- License Agreement
- For Open Source Computer Vision Library
- (3-clause BSD License)
- Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- Third party copyrights are property of their respective owners.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the names of the copyright holders nor the names of the contributors
- may be used to endorse or promote products derived from this software
- without specific prior written permission.
- This software is provided by the copyright holders and contributors "as is" and
- any express or implied warranties, including, but not limited to, the implied
- warranties of merchantability and fitness for a particular purpose are
- disclaimed. In no event shall copyright holders or contributors be liable for
- any direct, indirect, incidental, special, exemplary, or consequential damages
- (including, but not limited to, procurement of substitute goods or services;
- loss of use, data, or profits; or business interruption) however caused
- and on any theory of liability, whether in contract, strict liability,
- or tort (including negligence or otherwise) arising in any way out of
- the use of this software, even if advised of the possibility of such damage.
- This file was part of GSoC Project: Facemark API for OpenCV
- Final report: https://gist.github.com/kurnianggoro/74de9121e122ad0bd825176751d47ecc
- Student: Laksono Kurnianggoro
- Mentor: Delia Passalacqua
- */
- /*----------------------------------------------
- * Usage:
- * facemark_lbf_fitting <face_cascade_model> <lbf_model> <video_name>
- *
- * example:
- * facemark_lbf_fitting ../face_cascade.xml ../LBF.model ../video.mp4
- *
- * note: do not forget to provide the LBF_MODEL and DETECTOR_MODEL
- * the model are available at opencv_contrib/modules/face/data/
- *--------------------------------------------------*/
- #include <stdio.h>
- #include <ctime>
- #include <iostream>
- #include "opencv2/core.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/face.hpp"
- using namespace std;
- using namespace cv;
- using namespace cv::face;
- static bool myDetector(InputArray image, OutputArray ROIs, CascadeClassifier *face_cascade);
- static bool parseArguments(int argc, char** argv,
- String & cascade, String & model,String & video);
- int main(int argc, char** argv ){
- String cascade_path,model_path,images_path, video_path;
- if(!parseArguments(argc, argv, cascade_path,model_path,video_path))
- return -1;
- CascadeClassifier face_cascade;
- face_cascade.load(cascade_path);
- FacemarkLBF::Params params;
- params.model_filename = model_path;
- params.cascade_face = cascade_path;
- Ptr<FacemarkLBF> facemark = FacemarkLBF::create(params);
- facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
- facemark->loadModel(params.model_filename.c_str());
- VideoCapture capture(video_path);
- Mat frame;
- if( !capture.isOpened() ){
- printf("Error when reading vide\n");
- return 0;
- }
- Mat img;
- String text;
- char buff[255];
- double fittime;
- int nfaces;
- std::vector<Rect> rects,rects_scaled;
- std::vector<std::vector<Point2f> > landmarks;
- CascadeClassifier cc(params.cascade_face.c_str());
- namedWindow( "w", 1);
- for( ; ; )
- {
- capture >> frame;
- if(frame.empty())
- break;
- double __time__ = (double)getTickCount();
- float scale = (float)(400.0/frame.cols);
- resize(frame, img, Size((int)(frame.cols*scale), (int)(frame.rows*scale)), 0, 0, INTER_LINEAR_EXACT);
- facemark->getFaces(img, rects);
- rects_scaled.clear();
- for(int j=0;j<(int)rects.size();j++){
- rects_scaled.push_back(Rect(
- (int)(rects[j].x/scale),
- (int)(rects[j].y/scale),
- (int)(rects[j].width/scale),
- (int)(rects[j].height/scale)));
- }
- rects = rects_scaled;
- fittime=0;
- nfaces = (int)rects.size();
- if(rects.size()>0){
- double newtime = (double)getTickCount();
- facemark->fit(frame, rects, landmarks);
- fittime = ((getTickCount() - newtime)/getTickFrequency());
- for(int j=0;j<(int)rects.size();j++){
- landmarks[j] = Mat(Mat(landmarks[j]));
- drawFacemarks(frame, landmarks[j], Scalar(0,0,255));
- }
- }
- double fps = (getTickFrequency()/(getTickCount() - __time__));
- sprintf(buff, "faces: %i %03.2f fps, fit:%03.0f ms",nfaces,fps,fittime*1000);
- text = buff;
- putText(frame, text, Point(20,40), FONT_HERSHEY_PLAIN , 2.0,Scalar::all(255), 2, 8);
- imshow("w", frame);
- waitKey(1); // waits to display frame
- }
- waitKey(0); // key press to close window
- }
- bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade)
- {
- Mat gray;
- if (image.channels() > 1)
- cvtColor(image, gray, COLOR_BGR2GRAY);
- else
- gray = image.getMat().clone();
- equalizeHist(gray, gray);
- std::vector<Rect> faces_;
- face_cascade->detectMultiScale(gray, faces_, 1.4, 2, CASCADE_SCALE_IMAGE, Size(30, 30));
- Mat(faces_).copyTo(faces);
- return true;
- }
- bool parseArguments(int argc, char** argv,
- String & cascade,
- String & model,
- String & video
- ){
- const String keys =
- "{ @c cascade | | (required) path to the cascade model file for the face detector }"
- "{ @m model | | (required) path to the trained model }"
- "{ @v video | | (required) path input video}"
- "{ help h usage ? | | facemark_lbf_fitting -cascade -model -video [-t]\n"
- " example: facemark_lbf_fitting ../face_cascade.xml ../LBF.model ../video.mp4}"
- ;
- CommandLineParser parser(argc, argv,keys);
- parser.about("hello");
- if (parser.has("help")){
- parser.printMessage();
- return false;
- }
- cascade = String(parser.get<String>("cascade"));
- model = String(parser.get<string>("model"));
- video = String(parser.get<string>("video"));
- if(cascade.empty() || model.empty() || video.empty() ){
- std::cerr << "one or more required arguments are not found" << '\n';
- cout<<"cascade : "<<cascade.c_str()<<endl;
- cout<<"model : "<<model.c_str()<<endl;
- cout<<"video : "<<video.c_str()<<endl;
- parser.printMessage();
- return false;
- }
- return true;
- }
|