123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- const std::string DNN_SUPERRES_DIR = "dnn_superres";
- const std::string IMAGE_FILENAME = "butterfly.png";
- /****************************************************************************************\
- * Test single output models *
- \****************************************************************************************/
- void runSingleModel(std::string algorithm, int scale, std::string model_filename)
- {
- SCOPED_TRACE(algorithm);
- Ptr <DnnSuperResImpl> dnn_sr = makePtr<DnnSuperResImpl>();
- std::string path = cvtest::findDataFile(DNN_SUPERRES_DIR + "/" + IMAGE_FILENAME);
- Mat img = imread(path);
- ASSERT_FALSE(img.empty()) << "Test image can't be loaded: " << path;
- std::string pb_path = cvtest::findDataFile(DNN_SUPERRES_DIR + "/" + model_filename);
- dnn_sr->readModel(pb_path);
- dnn_sr->setModel(algorithm, scale);
- ASSERT_EQ(scale, dnn_sr->getScale());
- ASSERT_EQ(algorithm, dnn_sr->getAlgorithm());
- Mat result;
- dnn_sr->upsample(img, result);
- ASSERT_FALSE(result.empty()) << "Could not perform upsampling for scale algorithm " << algorithm << " and scale factor " << scale;
- int new_cols = img.cols * scale;
- int new_rows = img.rows * scale;
- ASSERT_EQ(new_cols, result.cols);
- ASSERT_EQ(new_rows, result.rows);
- }
- TEST(CV_DnnSuperResSingleOutputTest, accuracy_espcn_2)
- {
- runSingleModel("espcn", 2, "ESPCN_x2.pb");
- }
- TEST(CV_DnnSuperResSingleOutputTest, accuracy_fsrcnn_2)
- {
- runSingleModel("fsrcnn", 2, "FSRCNN_x2.pb");
- }
- TEST(CV_DnnSuperResSingleOutputTest, accuracy_fsrcnn_3)
- {
- runSingleModel("fsrcnn", 3, "FSRCNN_x3.pb");
- }
- /****************************************************************************************\
- * Test multi output models *
- \****************************************************************************************/
- void runMultiModel(std::string algorithm, int scale, std::string model_filename,
- std::vector<int> scales, std::vector<String> node_names)
- {
- SCOPED_TRACE(algorithm);
- Ptr <DnnSuperResImpl> dnn_sr = makePtr<DnnSuperResImpl>();
- std::string path = cvtest::findDataFile(DNN_SUPERRES_DIR + "/" + IMAGE_FILENAME);
- Mat img = imread(path);
- ASSERT_FALSE(img.empty()) << "Test image can't be loaded: " << path;
- std::string pb_path = cvtest::findDataFile(DNN_SUPERRES_DIR + "/" + model_filename);
- dnn_sr->readModel(pb_path);
- dnn_sr->setModel(algorithm, scale);
- ASSERT_EQ(scale, dnn_sr->getScale());
- ASSERT_EQ(algorithm, dnn_sr->getAlgorithm());
- std::vector<Mat> outputs;
- dnn_sr->upsampleMultioutput(img, outputs, scales, node_names);
- for(unsigned int i = 0; i < outputs.size(); i++)
- {
- SCOPED_TRACE(cv::format("i=%d scale[i]=%d", i, scales[i]));
- ASSERT_FALSE(outputs[i].empty());
- int new_cols = img.cols * scales[i];
- int new_rows = img.rows * scales[i];
- EXPECT_EQ(new_cols, outputs[i].cols);
- EXPECT_EQ(new_rows, outputs[i].rows);
- }
- }
- TEST(CV_DnnSuperResMultiOutputTest, accuracy)
- {
- //LAPSRN
- //x4
- std::vector<String> names_4x {"NCHW_output_2x", "NCHW_output_4x"};
- std::vector<int> scales_4x {2, 4};
- runMultiModel("lapsrn", 4, "LapSRN_x4.pb", scales_4x, names_4x);
- }
- }}
|