1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- from skimage import io, transform
- from multiprocessing.dummy import Pool as ThreadPool
- def rescale(root_new, root_old, img_path, ann_path, out_shape):
- try:
- img = io.imread(root_old+"/"+img_path)
- except Exception as E:
- print E
- h, w, _ = img.shape
- f_h, f_w = float(out_shape)/h, float(out_shape)/w
- trans_img = transform.rescale(img, (f_h, f_w))
- num_objs = 0
- with open(root_old+"/"+ann_path, 'r') as f:
- ann = f.readline()
- ann = ann.rstrip()
- ann = ann.split(' ')
- ann = [float(i) for i in ann]
- num_objs = len(ann) / 5
- for idx in xrange(num_objs):
- ann[idx * 5 + 0] = int(f_w * ann[idx * 5 + 0])
- ann[idx * 5 + 1] = int(f_h * ann[idx * 5 + 1])
- ann[idx * 5 + 2] = int(f_w * ann[idx * 5 + 2])
- ann[idx * 5 + 3] = int(f_h * ann[idx * 5 + 3])
- # Write the new annotations to file
- with open(root_new+"/"+ann_path, 'w') as f_new:
- for val in ann:
- f_new.write(str(val)+' ')
- # Save the new image
- io.imwrite(root_new+"/"+img_path, trans_img)
- def preprocess():
- source = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012_Resize/source.txt'
- root_old = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012'
- root_new = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012_Resize'
- out_shape = 416
- with open(source, 'r') as src:
- lines = src.readlines()
- print 'Processing {} images and annotations'.format(len(lines))
- for line in lines:
- line = line.rstrip()
- line = line.split(' ')
- img_path = line[0]
- ann_path = line[1]
- rescale(root_new, root_old, img_path, ann_path, out_shape)
- if __name__ == '__main__':
- preprocess()
|