1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- import argparse
- import sys
- import os
- import time
- import numpy as np
- from sklearn.cluster import KMeans
- import matplotlib.pyplot as plt
- def k_means(K, data, max_iter, n_jobs, image_file):
- X = np.array(data)
- np.random.shuffle(X)
- begin = time.time()
- print 'Running kmeans'
- kmeans = KMeans(n_clusters=K, max_iter=max_iter, n_jobs=n_jobs, verbose=1).fit(X)
- print 'K-Means took {} seconds to complete'.format(time.time()-begin)
- step_size = 0.2
- xmin, xmax = X[:, 0].min()-1, X[:, 0].max()+1
- ymin, ymax = X[:, 1].min()-1, X[:, 1].max()+1
- xx, yy = np.meshgrid(np.arange(xmin, xmax, step_size), np.arange(ymin, ymax, step_size))
- preds = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
- preds = preds.reshape(xx.shape)
- plt.figure()
- plt.clf()
- plt.imshow(preds, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower')
- plt.plot(X[:, 0], X[:, 1], 'k.', markersize=2)
- centroids = kmeans.cluster_centers_
- plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=5, color='r', zorder=10)
- plt.title("Anchor shapes generated using K-Means")
- plt.xlim(xmin, xmax)
- plt.ylim(ymin, ymax)
- print 'Mean centroids are:'
- for i, center in enumerate(centroids):
- print '{}: {}, {}'.format(i, center[0], center[1])
- # plt.xticks(())
- # plt.yticks(())
- plt.show()
- def pre_process(directory, data_list):
- if not os.path.exists(directory):
- print "Path {} doesn't exist".format(directory)
- return
- files = os.listdir(directory)
- print 'Loading data...'
- for i, f in enumerate(files):
- # Progress bar
- sys.stdout.write('\r')
- percentage = (i+1.0) / len(files)
- progress = int(percentage * 30)
- bar = [progress*'=', ' '*(29-progress), percentage*100]
- sys.stdout.write('[{}>{}] {:.0f}%'.format(*bar))
- sys.stdout.flush()
- with open(directory+"/"+f, 'r') as ann:
- l = ann.readline()
- l = l.rstrip()
- l = l.split(' ')
- l = [float(i) for i in l]
- if len(l) % 5 != 0:
- sys.stderr.write('File {} contains incorrect number of annotations'.format(f))
- return
- num_objs = len(l) / 5
- for obj in range(num_objs):
- xmin = l[obj * 5 + 0]
- ymin = l[obj * 5 + 1]
- xmax = l[obj * 5 + 2]
- ymax = l[obj * 5 + 3]
- w = xmax - xmin
- h = ymax - ymin
- data_list.append([w, h])
- if w > 1000 or h > 1000:
- sys.stdout.write("[{}, {}]".format(w, h))
- sys.stdout.write('\nProcessed {} files containing {} objects'.format(len(files), len(data_list)))
- return data_list
- def main():
- parser = argparse.ArgumentParser("Parse hyperparameters")
- parser.add_argument("clusters", help="Number of clusters", type=int)
- parser.add_argument("dir", help="Directory containing annotations")
- parser.add_argument("image_file", help="File to generate the final cluster of image")
- parser.add_argument('-jobs', help="Number of jobs for parallel computation", default=1)
- parser.add_argument('-iter', help="Max Iterations to run algorithm for", default=1000)
- p = parser.parse_args(sys.argv[1:])
- K = p.clusters
- directory = p.dir
- data_list = []
- pre_process(directory, data_list )
- sys.stdout.write('\nDone collecting data\n')
- k_means(K, data_list, int(p.iter), int(p.jobs), p.image_file)
- print 'Done !'
- if __name__=='__main__':
- try:
- main()
- except Exception as E:
- print E
|