SqueezeNet_train_test.prototxt 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927
  1. # SqueezeNet architecture for image classification on ImageNet dataset
  2. name: "SqueezeNet"
  3. layer {
  4. name: "ImageNet"
  5. type: "Data"
  6. top: "data"
  7. top: "label"
  8. transform_param {
  9. crop_size: 227
  10. mean_value: 104
  11. mean_value: 117
  12. mean_value: 123
  13. }
  14. data_param {
  15. source: "ImageNet_train_lmdb"
  16. batch_size: 64
  17. backend: LMDB
  18. }
  19. include {
  20. phase: TRAIN
  21. }
  22. }
  23. layer {
  24. name: "ImageNet"
  25. type: "Data"
  26. top: "data"
  27. top: "label"
  28. transform_param {
  29. crop_size: 227
  30. mean_value: 104
  31. mean_value: 117
  32. mean_value: 123
  33. }
  34. data_param {
  35. source: "ImageNet_val_lmdb"
  36. batch_size: 5
  37. backend: LMDB
  38. }
  39. include {
  40. phase: TEST
  41. }
  42. }
  43. layer {
  44. name: "conv1"
  45. type: "Convolution"
  46. bottom: "data"
  47. top: "conv1"
  48. convolution_param {
  49. num_output: 96
  50. kernel_size: 7
  51. stride: 2
  52. weight_filler {
  53. type: "xavier"
  54. }
  55. bias_filler {
  56. type: "constant"
  57. value: 0.01
  58. }
  59. }
  60. }
  61. layer {
  62. name: "rect_conv1"
  63. type: "ReLU"
  64. relu_param {
  65. negative_slope: 0.01
  66. }
  67. bottom: "conv1"
  68. top: "conv1"
  69. }
  70. layer {
  71. name: "pool1"
  72. type: "Pooling"
  73. bottom: "conv1"
  74. top: "pool1"
  75. pooling_param {
  76. pool: MAX
  77. kernel_size: 3
  78. stride: 2
  79. }
  80. }
  81. layer {
  82. name: "fire2_squeeze"
  83. type: "Convolution"
  84. bottom: "pool1"
  85. top: "fire2_squeeze"
  86. convolution_param {
  87. num_output: 16
  88. kernel_size: 1
  89. stride: 1
  90. pad: 0
  91. weight_filler {
  92. type: "xavier"
  93. }
  94. bias_filler {
  95. type: "constant"
  96. value: 0.01
  97. }
  98. }
  99. }
  100. layer {
  101. name: "rect_fire2_squeeze"
  102. type: "ReLU"
  103. relu_param {
  104. negative_slope: 0.01
  105. }
  106. bottom: "fire2_squeeze"
  107. top: "fire2_squeeze"
  108. }
  109. layer {
  110. name: "fire2_expand_1x1"
  111. type: "Convolution"
  112. bottom: "fire2_squeeze"
  113. top: "fire2_expand_1x1"
  114. convolution_param {
  115. num_output: 64
  116. kernel_size: 1
  117. stride: 1
  118. pad: 0
  119. weight_filler {
  120. type: "xavier"
  121. }
  122. bias_filler {
  123. type: "constant"
  124. value: 0.01
  125. }
  126. }
  127. }
  128. layer {
  129. name: "rect_fire2_expand_1x1"
  130. type: "ReLU"
  131. relu_param {
  132. negative_slope: 0.01
  133. }
  134. bottom: "fire2_expand_1x1"
  135. top: "fire2_expand_1x1"
  136. }
  137. layer {
  138. name: "fire2_expand_3x3"
  139. type: "Convolution"
  140. bottom: "fire2_squeeze"
  141. top: "fire2_expand_3x3"
  142. convolution_param {
  143. num_output: 64
  144. kernel_size: 3
  145. stride: 1
  146. pad: 1
  147. weight_filler {
  148. type: "xavier"
  149. }
  150. bias_filler {
  151. type: "constant"
  152. value: 0.01
  153. }
  154. }
  155. }
  156. layer {
  157. name: "rect_fire2_expand_3x3"
  158. type: "ReLU"
  159. relu_param {
  160. negative_slope: 0.01
  161. }
  162. bottom: "fire2_expand_3x3"
  163. top: "fire2_expand_3x3"
  164. }
  165. layer {
  166. name: "fire2"
  167. type: "Concat"
  168. bottom: "fire2_expand_1x1"
  169. bottom: "fire2_expand_3x3"
  170. top: "fire2"
  171. concat_param {
  172. axis: 1
  173. }
  174. }
  175. layer {
  176. name: "fire3_squeeze"
  177. type: "Convolution"
  178. bottom: "fire2"
  179. top: "fire3_squeeze"
  180. convolution_param {
  181. num_output: 16
  182. kernel_size: 1
  183. stride: 1
  184. pad: 0
  185. weight_filler {
  186. type: "xavier"
  187. }
  188. bias_filler {
  189. type: "constant"
  190. value: 0.01
  191. }
  192. }
  193. }
  194. layer {
  195. name: "rect_fire3_squeeze"
  196. type: "ReLU"
  197. relu_param {
  198. negative_slope: 0.01
  199. }
  200. bottom: "fire3_squeeze"
  201. top: "fire3_squeeze"
  202. }
  203. layer {
  204. name: "fire3_expand_1x1"
  205. type: "Convolution"
  206. bottom: "fire3_squeeze"
  207. top: "fire3_expand_1x1"
  208. convolution_param {
  209. num_output: 64
  210. kernel_size: 1
  211. stride: 1
  212. pad: 0
  213. weight_filler {
  214. type: "xavier"
  215. }
  216. bias_filler {
  217. type: "constant"
  218. value: 0.01
  219. }
  220. }
  221. }
  222. layer {
  223. name: "rect_fire3_expand_1x1"
  224. type: "ReLU"
  225. relu_param {
  226. negative_slope: 0.01
  227. }
  228. bottom: "fire3_expand_1x1"
  229. top: "fire3_expand_1x1"
  230. }
  231. layer {
  232. name: "fire3_expand_3x3"
  233. type: "Convolution"
  234. bottom: "fire3_squeeze"
  235. top: "fire3_expand_3x3"
  236. convolution_param {
  237. num_output: 64
  238. kernel_size: 3
  239. stride: 1
  240. pad: 1
  241. weight_filler {
  242. type: "xavier"
  243. }
  244. bias_filler {
  245. type: "constant"
  246. value: 0.01
  247. }
  248. }
  249. }
  250. layer {
  251. name: "rect_fire3_expand_3x3"
  252. type: "ReLU"
  253. relu_param {
  254. negative_slope: 0.01
  255. }
  256. bottom: "fire3_expand_3x3"
  257. top: "fire3_expand_3x3"
  258. }
  259. layer {
  260. name: "fire3"
  261. type: "Concat"
  262. bottom: "fire3_expand_1x1"
  263. bottom: "fire3_expand_3x3"
  264. top: "fire3"
  265. concat_param {
  266. axis: 1
  267. }
  268. }
  269. layer {
  270. name: "fire4_squeeze"
  271. type: "Convolution"
  272. bottom: "fire3"
  273. top: "fire4_squeeze"
  274. convolution_param {
  275. num_output: 32
  276. kernel_size: 1
  277. stride: 1
  278. pad: 0
  279. weight_filler {
  280. type: "xavier"
  281. }
  282. bias_filler {
  283. type: "constant"
  284. value: 0.01
  285. }
  286. }
  287. }
  288. layer {
  289. name: "rect_fire4_squeeze"
  290. type: "ReLU"
  291. relu_param {
  292. negative_slope: 0.01
  293. }
  294. bottom: "fire4_squeeze"
  295. top: "fire4_squeeze"
  296. }
  297. layer {
  298. name: "fire4_expand_1x1"
  299. type: "Convolution"
  300. bottom: "fire4_squeeze"
  301. top: "fire4_expand_1x1"
  302. convolution_param {
  303. num_output: 128
  304. kernel_size: 1
  305. stride: 1
  306. pad: 0
  307. weight_filler {
  308. type: "xavier"
  309. }
  310. bias_filler {
  311. type: "constant"
  312. value: 0.01
  313. }
  314. }
  315. }
  316. layer {
  317. name: "rect_fire4_expand_1x1"
  318. type: "ReLU"
  319. relu_param {
  320. negative_slope: 0.01
  321. }
  322. bottom: "fire4_expand_1x1"
  323. top: "fire4_expand_1x1"
  324. }
  325. layer {
  326. name: "fire4_expand_3x3"
  327. type: "Convolution"
  328. bottom: "fire4_squeeze"
  329. top: "fire4_expand_3x3"
  330. convolution_param {
  331. num_output: 128
  332. kernel_size: 3
  333. stride: 1
  334. pad: 1
  335. weight_filler {
  336. type: "xavier"
  337. }
  338. bias_filler {
  339. type: "constant"
  340. value: 0.01
  341. }
  342. }
  343. }
  344. layer {
  345. name: "rect_fire4_expand_3x3"
  346. type: "ReLU"
  347. relu_param {
  348. negative_slope: 0.01
  349. }
  350. bottom: "fire4_expand_3x3"
  351. top: "fire4_expand_3x3"
  352. }
  353. layer {
  354. name: "fire4"
  355. type: "Concat"
  356. bottom: "fire4_expand_1x1"
  357. bottom: "fire4_expand_3x3"
  358. top: "fire4"
  359. concat_param {
  360. axis: 1
  361. }
  362. }
  363. layer {
  364. name: "pool4"
  365. type: "Pooling"
  366. bottom: "fire4"
  367. top: "pool4"
  368. pooling_param {
  369. pool: MAX
  370. kernel_size: 3
  371. stride: 2
  372. }
  373. }
  374. layer {
  375. name: "fire5_squeeze"
  376. type: "Convolution"
  377. bottom: "pool4"
  378. top: "fire5_squeeze"
  379. convolution_param {
  380. num_output: 32
  381. kernel_size: 1
  382. stride: 1
  383. pad: 0
  384. weight_filler {
  385. type: "xavier"
  386. }
  387. bias_filler {
  388. type: "constant"
  389. value: 0.01
  390. }
  391. }
  392. }
  393. layer {
  394. name: "rect_fire5_squeeze"
  395. type: "ReLU"
  396. relu_param {
  397. negative_slope: 0.01
  398. }
  399. bottom: "fire5_squeeze"
  400. top: "fire5_squeeze"
  401. }
  402. layer {
  403. name: "fire5_expand_1x1"
  404. type: "Convolution"
  405. bottom: "fire5_squeeze"
  406. top: "fire5_expand_1x1"
  407. convolution_param {
  408. num_output: 128
  409. kernel_size: 1
  410. stride: 1
  411. pad: 0
  412. weight_filler {
  413. type: "xavier"
  414. }
  415. bias_filler {
  416. type: "constant"
  417. value: 0.01
  418. }
  419. }
  420. }
  421. layer {
  422. name: "rect_fire5_expand_1x1"
  423. type: "ReLU"
  424. relu_param {
  425. negative_slope: 0.01
  426. }
  427. bottom: "fire5_expand_1x1"
  428. top: "fire5_expand_1x1"
  429. }
  430. layer {
  431. name: "fire5_expand_3x3"
  432. type: "Convolution"
  433. bottom: "fire5_squeeze"
  434. top: "fire5_expand_3x3"
  435. convolution_param {
  436. num_output: 128
  437. kernel_size: 3
  438. stride: 1
  439. pad: 1
  440. weight_filler {
  441. type: "xavier"
  442. }
  443. bias_filler {
  444. type: "constant"
  445. value: 0.01
  446. }
  447. }
  448. }
  449. layer {
  450. name: "rect_fire5_expand_3x3"
  451. type: "ReLU"
  452. relu_param {
  453. negative_slope: 0.01
  454. }
  455. bottom: "fire5_expand_3x3"
  456. top: "fire5_expand_3x3"
  457. }
  458. layer {
  459. name: "fire5"
  460. type: "Concat"
  461. bottom: "fire5_expand_1x1"
  462. bottom: "fire5_expand_3x3"
  463. top: "fire5"
  464. concat_param {
  465. axis: 1
  466. }
  467. }
  468. layer {
  469. name: "fire6_squeeze"
  470. type: "Convolution"
  471. bottom: "fire5"
  472. top: "fire6_squeeze"
  473. convolution_param {
  474. num_output: 48
  475. kernel_size: 1
  476. stride: 1
  477. pad: 0
  478. weight_filler {
  479. type: "xavier"
  480. }
  481. bias_filler {
  482. type: "constant"
  483. value: 0.01
  484. }
  485. }
  486. }
  487. layer {
  488. name: "rect_fire6_squeeze"
  489. type: "ReLU"
  490. relu_param {
  491. negative_slope: 0.01
  492. }
  493. bottom: "fire6_squeeze"
  494. top: "fire6_squeeze"
  495. }
  496. layer {
  497. name: "fire6_expand_1x1"
  498. type: "Convolution"
  499. bottom: "fire6_squeeze"
  500. top: "fire6_expand_1x1"
  501. convolution_param {
  502. num_output: 192
  503. kernel_size: 1
  504. stride: 1
  505. pad: 0
  506. weight_filler {
  507. type: "xavier"
  508. }
  509. bias_filler {
  510. type: "constant"
  511. value: 0.01
  512. }
  513. }
  514. }
  515. layer {
  516. name: "rect_fire6_expand_1x1"
  517. type: "ReLU"
  518. relu_param {
  519. negative_slope: 0.01
  520. }
  521. bottom: "fire6_expand_1x1"
  522. top: "fire6_expand_1x1"
  523. }
  524. layer {
  525. name: "fire6_expand_3x3"
  526. type: "Convolution"
  527. bottom: "fire6_squeeze"
  528. top: "fire6_expand_3x3"
  529. convolution_param {
  530. num_output: 192
  531. kernel_size: 3
  532. stride: 1
  533. pad: 1
  534. weight_filler {
  535. type: "xavier"
  536. }
  537. bias_filler {
  538. type: "constant"
  539. value: 0.01
  540. }
  541. }
  542. }
  543. layer {
  544. name: "rect_fire6_expand_3x3"
  545. type: "ReLU"
  546. relu_param {
  547. negative_slope: 0.01
  548. }
  549. bottom: "fire6_expand_3x3"
  550. top: "fire6_expand_3x3"
  551. }
  552. layer {
  553. name: "fire6"
  554. type: "Concat"
  555. bottom: "fire6_expand_1x1"
  556. bottom: "fire6_expand_3x3"
  557. top: "fire6"
  558. concat_param {
  559. axis: 1
  560. }
  561. }
  562. layer {
  563. name: "fire7_squeeze"
  564. type: "Convolution"
  565. bottom: "fire6"
  566. top: "fire7_squeeze"
  567. convolution_param {
  568. num_output: 48
  569. kernel_size: 1
  570. stride: 1
  571. pad: 0
  572. weight_filler {
  573. type: "xavier"
  574. }
  575. bias_filler {
  576. type: "constant"
  577. value: 0.01
  578. }
  579. }
  580. }
  581. layer {
  582. name: "rect_fire7_squeeze"
  583. type: "ReLU"
  584. relu_param {
  585. negative_slope: 0.01
  586. }
  587. bottom: "fire7_squeeze"
  588. top: "fire7_squeeze"
  589. }
  590. layer {
  591. name: "fire7_expand_1x1"
  592. type: "Convolution"
  593. bottom: "fire7_squeeze"
  594. top: "fire7_expand_1x1"
  595. convolution_param {
  596. num_output: 192
  597. kernel_size: 1
  598. stride: 1
  599. pad: 0
  600. weight_filler {
  601. type: "xavier"
  602. }
  603. bias_filler {
  604. type: "constant"
  605. value: 0.01
  606. }
  607. }
  608. }
  609. layer {
  610. name: "rect_fire7_expand_1x1"
  611. type: "ReLU"
  612. relu_param {
  613. negative_slope: 0.01
  614. }
  615. bottom: "fire7_expand_1x1"
  616. top: "fire7_expand_1x1"
  617. }
  618. layer {
  619. name: "fire7_expand_3x3"
  620. type: "Convolution"
  621. bottom: "fire7_squeeze"
  622. top: "fire7_expand_3x3"
  623. convolution_param {
  624. num_output: 192
  625. kernel_size: 3
  626. stride: 1
  627. pad: 1
  628. weight_filler {
  629. type: "xavier"
  630. }
  631. bias_filler {
  632. type: "constant"
  633. value: 0.01
  634. }
  635. }
  636. }
  637. layer {
  638. name: "rect_fire7_expand_3x3"
  639. type: "ReLU"
  640. relu_param {
  641. negative_slope: 0.01
  642. }
  643. bottom: "fire7_expand_3x3"
  644. top: "fire7_expand_3x3"
  645. }
  646. layer {
  647. name: "fire7"
  648. type: "Concat"
  649. bottom: "fire7_expand_1x1"
  650. bottom: "fire7_expand_3x3"
  651. top: "fire7"
  652. concat_param {
  653. axis: 1
  654. }
  655. }
  656. layer {
  657. name: "fire8_squeeze"
  658. type: "Convolution"
  659. bottom: "fire7"
  660. top: "fire8_squeeze"
  661. convolution_param {
  662. num_output: 64
  663. kernel_size: 1
  664. stride: 1
  665. pad: 0
  666. weight_filler {
  667. type: "xavier"
  668. }
  669. bias_filler {
  670. type: "constant"
  671. value: 0.01
  672. }
  673. }
  674. }
  675. layer {
  676. name: "rect_fire8_squeeze"
  677. type: "ReLU"
  678. relu_param {
  679. negative_slope: 0.01
  680. }
  681. bottom: "fire8_squeeze"
  682. top: "fire8_squeeze"
  683. }
  684. layer {
  685. name: "fire8_expand_1x1"
  686. type: "Convolution"
  687. bottom: "fire8_squeeze"
  688. top: "fire8_expand_1x1"
  689. convolution_param {
  690. num_output: 256
  691. kernel_size: 1
  692. stride: 1
  693. pad: 0
  694. weight_filler {
  695. type: "xavier"
  696. }
  697. bias_filler {
  698. type: "constant"
  699. value: 0.01
  700. }
  701. }
  702. }
  703. layer {
  704. name: "rect_fire8_expand_1x1"
  705. type: "ReLU"
  706. relu_param {
  707. negative_slope: 0.01
  708. }
  709. bottom: "fire8_expand_1x1"
  710. top: "fire8_expand_1x1"
  711. }
  712. layer {
  713. name: "fire8_expand_3x3"
  714. type: "Convolution"
  715. bottom: "fire8_squeeze"
  716. top: "fire8_expand_3x3"
  717. convolution_param {
  718. num_output: 256
  719. kernel_size: 3
  720. stride: 1
  721. pad: 1
  722. weight_filler {
  723. type: "xavier"
  724. }
  725. bias_filler {
  726. type: "constant"
  727. value: 0.01
  728. }
  729. }
  730. }
  731. layer {
  732. name: "rect_fire8_expand_3x3"
  733. type: "ReLU"
  734. relu_param {
  735. negative_slope: 0.01
  736. }
  737. bottom: "fire8_expand_3x3"
  738. top: "fire8_expand_3x3"
  739. }
  740. layer {
  741. name: "fire8"
  742. type: "Concat"
  743. bottom: "fire8_expand_1x1"
  744. bottom: "fire8_expand_3x3"
  745. top: "fire8"
  746. concat_param {
  747. axis: 1
  748. }
  749. }
  750. layer {
  751. name: "pool8"
  752. type: "Pooling"
  753. bottom: "fire8"
  754. top: "pool8"
  755. pooling_param {
  756. pool: MAX
  757. kernel_size: 3
  758. stride: 2
  759. }
  760. }
  761. layer {
  762. name: "fire9_squeeze"
  763. type: "Convolution"
  764. bottom: "pool8"
  765. top: "fire9_squeeze"
  766. convolution_param {
  767. num_output: 64
  768. kernel_size: 1
  769. stride: 1
  770. pad: 0
  771. weight_filler {
  772. type: "xavier"
  773. }
  774. bias_filler {
  775. type: "constant"
  776. value: 0.01
  777. }
  778. }
  779. }
  780. layer {
  781. name: "rect_fire9_squeeze"
  782. type: "ReLU"
  783. relu_param {
  784. negative_slope: 0.01
  785. }
  786. bottom: "fire9_squeeze"
  787. top: "fire9_squeeze"
  788. }
  789. layer {
  790. name: "fire9_expand_1x1"
  791. type: "Convolution"
  792. bottom: "fire9_squeeze"
  793. top: "fire9_expand_1x1"
  794. convolution_param {
  795. num_output: 256
  796. kernel_size: 1
  797. stride: 1
  798. pad: 0
  799. weight_filler {
  800. type: "xavier"
  801. }
  802. bias_filler {
  803. type: "constant"
  804. value: 0.01
  805. }
  806. }
  807. }
  808. layer {
  809. name: "rect_fire9_expand_1x1"
  810. type: "ReLU"
  811. relu_param {
  812. negative_slope: 0.01
  813. }
  814. bottom: "fire9_expand_1x1"
  815. top: "fire9_expand_1x1"
  816. }
  817. layer {
  818. name: "fire9_expand_3x3"
  819. type: "Convolution"
  820. bottom: "fire9_squeeze"
  821. top: "fire9_expand_3x3"
  822. convolution_param {
  823. num_output: 256
  824. kernel_size: 3
  825. stride: 1
  826. pad: 1
  827. weight_filler {
  828. type: "xavier"
  829. }
  830. bias_filler {
  831. type: "constant"
  832. value: 0.01
  833. }
  834. }
  835. }
  836. layer {
  837. name: "rect_fire9_expand_3x3"
  838. type: "ReLU"
  839. relu_param {
  840. negative_slope: 0.01
  841. }
  842. bottom: "fire9_expand_3x3"
  843. top: "fire9_expand_3x3"
  844. }
  845. layer {
  846. name: "fire9"
  847. type: "Concat"
  848. bottom: "fire9_expand_1x1"
  849. bottom: "fire9_expand_3x3"
  850. top: "fire9"
  851. concat_param {
  852. axis: 1
  853. }
  854. }
  855. layer {
  856. name: "conv10"
  857. type: "Convolution"
  858. bottom: "fire9"
  859. top: "conv10"
  860. convolution_param {
  861. num_output: 1000
  862. kernel_size: 1
  863. stride: 1
  864. weight_filler {
  865. type: "gaussian"
  866. mean: 0.0
  867. std: 0.01
  868. }
  869. bias_filler {
  870. type: "constant"
  871. value: 0.01
  872. }
  873. }
  874. }
  875. layer {
  876. name: "rect_conv10"
  877. type: "ReLU"
  878. relu_param {
  879. negative_slope: 0.01
  880. }
  881. bottom: "conv10"
  882. top: "conv10"
  883. }
  884. layer {
  885. name: "pool10"
  886. type: "Pooling"
  887. bottom: "conv10"
  888. top: "pool10"
  889. pooling_param {
  890. pool: AVE
  891. global_pooling: true
  892. }
  893. }
  894. layer {
  895. name: "loss"
  896. type: "SoftmaxWithLoss"
  897. bottom: "pool10"
  898. bottom: "label"
  899. top: "loss"
  900. include {
  901. phase: TRAIN
  902. }
  903. }
  904. layer {
  905. name: "accuracy"
  906. type: "Accuracy"
  907. bottom: "pool10"
  908. bottom: "label"
  909. top: "accuracy"
  910. }
  911. layer {
  912. name: "accuracy_top_5"
  913. type: "Accuracy"
  914. bottom: "pool10"
  915. bottom: "label"
  916. top: "accuracy_top_5"
  917. include {
  918. phase: TEST
  919. }
  920. accuracy_param {
  921. top_k: 5
  922. }
  923. }