123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2014, Itseez Inc, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Itseez Inc or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include <iostream>
- #include <opencv2/opencv_modules.hpp>
- #ifdef HAVE_OPENCV_TEXT
- #include "opencv2/datasets/tr_icdar.hpp"
- #include <opencv2/core.hpp>
- #include "opencv2/text.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include <cstdio>
- #include <cstdlib> // atoi
- #include <string>
- #include <vector>
- using namespace std;
- using namespace cv;
- using namespace cv::datasets;
- using namespace cv::text;
- //Calculate edit distance between two words
- size_t edit_distance(const string& A, const string& B);
- size_t min(size_t x, size_t y, size_t z);
- bool isRepetitive(const string& s);
- bool sort_by_length(const string &a, const string &b);
- //Draw ER's in an image via floodFill
- void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation);
- size_t min(size_t x, size_t y, size_t z)
- {
- return x < y ? min(x,z) : min(y,z);
- }
- size_t edit_distance(const string& A, const string& B)
- {
- size_t NA = A.size();
- size_t NB = B.size();
- vector< vector<size_t> > M(NA + 1, vector<size_t>(NB + 1));
- for (size_t a = 0; a <= NA; ++a)
- M[a][0] = a;
- for (size_t b = 0; b <= NB; ++b)
- M[0][b] = b;
- for (size_t a = 1; a <= NA; ++a)
- for (size_t b = 1; b <= NB; ++b)
- {
- size_t x = M[a-1][b] + 1;
- size_t y = M[a][b-1] + 1;
- size_t z = M[a-1][b-1] + (A[a-1] == B[b-1] ? 0 : 1);
- M[a][b] = min(x,y,z);
- }
- return M[A.size()][B.size()];
- }
- bool sort_by_length(const string &a, const string &b){return (a.size()>b.size());}
- bool isRepetitive(const string& s)
- {
- int count = 0;
- for (int i=0; i<(int)s.size(); i++)
- {
- if ((s[i] == 'i') ||
- (s[i] == 'l') ||
- (s[i] == 'I'))
- count++;
- }
- if (count > ((int)s.size()+1)/2)
- {
- return true;
- }
- return false;
- }
- void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation)
- {
- for (int r=0; r<(int)group.size(); r++)
- {
- ERStat er = regions[group[r][0]][group[r][1]];
- if (er.parent != NULL) // deprecate the root region
- {
- int newMaskVal = 255;
- int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
- floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols),
- Scalar(255),0,Scalar(er.level),Scalar(0),flags);
- }
- }
- }
- // std::toupper is int->int
- static char char_toupper(char ch)
- {
- return (char)std::toupper((int)ch);
- }
- int main(int argc, char *argv[])
- {
- const char *keys =
- "{ help h usage ? | | show this message }"
- "{ path p |true| path to dataset root folder }"
- "{ ws wordspotting| | evaluate \"word spotting\" results }"
- "{ lex lexicon |1 | 0:no-lexicon, 1:100-words, 2:full-lexicon }";
- CommandLineParser parser(argc, argv, keys);
- string path(parser.get<string>("path"));
- if (parser.has("help") || path=="true")
- {
- parser.printMessage();
- return -1;
- }
- bool is_word_spotting = parser.has("ws");
- int selected_lex = parser.get<int>("lex");
- if ((selected_lex < 0) || (selected_lex > 2))
- {
- parser.printMessage();
- printf("Unsupported lex value.\n");
- return -1;
- }
- // loading train & test images description
- Ptr<TR_icdar> dataset = TR_icdar::create();
- dataset->load(path);
- vector<double> f1Each;
- unsigned int correctNum = 0;
- unsigned int returnedNum = 0;
- unsigned int returnedCorrectNum = 0;
- vector< Ptr<Object> >& test = dataset->getTest();
- unsigned int num = 0;
- for (vector< Ptr<Object> >::iterator itT=test.begin(); itT!=test.end(); ++itT)
- {
- TR_icdarObj *example = static_cast<TR_icdarObj *>((*itT).get());
- num++;
- printf("processed image: %u, name: %s\n", num, example->fileName.c_str());
- vector<string> empty_lexicon;
- vector<string> *lex;
- switch (selected_lex)
- {
- case 0:
- lex = &empty_lexicon;
- break;
- case 2:
- lex = &example->lexFull;
- break;
- default:
- lex = &example->lex100;
- break;
- }
- correctNum += example->words.size();
- unsigned int correctNumEach = example->words.size();
- // Take care of dontcare regions t.value == "###"
- for (size_t w=0; w<example->words.size(); w++)
- {
- string w_upper = example->words[w].value;
- transform(w_upper.begin(), w_upper.end(), w_upper.begin(), char_toupper);
- if ((find (lex->begin(), lex->end(), w_upper) == lex->end()) &&
- (is_word_spotting) && (selected_lex != 0))
- example->words[w].value = "###";
- if ( (example->words[w].value == "###") || (example->words[w].value.size()<3) )
- {
- correctNum --;
- correctNumEach --;
- }
- }
- unsigned int returnedNumEach = 0;
- unsigned int returnedCorrectNumEach = 0;
- Mat image = imread((path+"/test/"+example->fileName).c_str());
- /*Text Detection*/
- // Extract channels to be processed individually
- vector<Mat> channels;
- Mat grey;
- cvtColor(image,grey,COLOR_RGB2GRAY);
- // Notice here we are only using grey channel, see textdetection.cpp for example with more channels
- channels.push_back(grey);
- channels.push_back(255-grey);
- // Create ERFilter objects with the 1st and 2nd sworde default classifiers
- Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00015f,0.13f,0.2f,true,0.1f);
- Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5);
- vector<vector<ERStat> > regions(channels.size());
- // Apply the default cascade classifier to each independent channel (could be done in parallel)
- for (int c=0; c<(int)channels.size(); c++)
- {
- er_filter1->run(channels[c], regions[c]);
- er_filter2->run(channels[c], regions[c]);
- }
- // Detect character groups
- vector< vector<Vec2i> > nm_region_groups;
- vector<Rect> nm_boxes;
- erGrouping(image, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_HORIZ);
- /*Text Recognition (OCR)*/
- Ptr<OCRTesseract> ocr = OCRTesseract::create();
- bool ocr_is_tesseract = true;
- vector<string> final_words;
- vector<Rect> final_boxes;
- vector<float> final_confs;
- for (int i=0; i<(int)nm_boxes.size(); i++)
- {
- Mat group_img = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
- er_draw(channels, regions, nm_region_groups[i], group_img);
- if (ocr_is_tesseract)
- {
- group_img(nm_boxes[i]).copyTo(group_img);
- copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0));
- } else {
- group_img(Rect(1,1,image.cols,image.rows)).copyTo(group_img);
- }
- string output;
- vector<Rect> boxes;
- vector<string> words;
- vector<float> confidences;
- ocr->run(grey, group_img, output, &boxes, &words, &confidences, OCR_LEVEL_WORD);
- output.erase(remove(output.begin(), output.end(), '\n'), output.end());
- //cout << "OCR output = \"" << output << "\" length = " << output.size() << endl;
- if (output.size() < 3)
- continue;
- for (int j=0; j<(int)boxes.size(); j++)
- {
- if (ocr_is_tesseract)
- {
- boxes[j].x += nm_boxes[i].x-15;
- boxes[j].y += nm_boxes[i].y-15;
- }
- float min_confidence = (ocr_is_tesseract)? (float)51. : (float)0.;
- float min_confidence4 = (ocr_is_tesseract)? (float)60. : (float)0.;
- //cout << " word = " << words[j] << "\t confidence = " << confidences[j] << endl;
- if ((words[j].size() < 2) || (confidences[j] < min_confidence) ||
- ((words[j].size()==2) && (words[j][0] == words[j][1])) ||
- ((words[j].size()< 4) && (confidences[j] < min_confidence4)) ||
- isRepetitive(words[j]))
- {
- continue;
- }
- std::transform(words[j].begin(), words[j].end(), words[j].begin(), char_toupper);
- /* Increase confidence of predicted words matching a word in the lexicon */
- if (lex->size() > 0)
- {
- if (find(lex->begin(), lex->end(), words[j]) == lex->end())
- confidences[j] = 200;
- }
- final_words.push_back(words[j]);
- final_boxes.push_back(boxes[j]);
- final_confs.push_back(confidences[j]);
- }
- }
- /* Non Maximal Suppression using OCR confidence */
- float thr = 0.5;
- for (size_t i=0; i<final_words.size(); )
- {
- int to_delete = -1;
- for (size_t j=i+1; j<final_words.size(); )
- {
- to_delete = -1;
- Rect intersection = final_boxes[i] & final_boxes[j];
- float IoU = (float)intersection.area() / (final_boxes[i].area() + final_boxes[j].area() - intersection.area());
- if ((IoU > thr) || (intersection.area() > 0.8*final_boxes[i].area()) || (intersection.area() > 0.8*final_boxes[j].area()))
- {
- // if regions overlap more than thr delete the one with lower confidence
- to_delete = (final_confs[i] < final_confs[j]) ? i : j;
- if (to_delete == (int)j )
- {
- final_words.erase(final_words.begin()+j);
- final_boxes.erase(final_boxes.begin()+j);
- final_confs.erase(final_confs.begin()+j);
- continue;
- } else {
- break;
- }
- }
- j++;
- }
- if (to_delete == (int)i )
- {
- final_words.erase(final_words.begin()+i);
- final_boxes.erase(final_boxes.begin()+i);
- final_confs.erase(final_confs.begin()+i);
- continue;
- }
- i++;
- }
- /* Predicted words which are not in the lexicon are filtered
- or changed to match one (when edit distance ratio < 0.34)*/
- float max_edit_distance_ratio = (float)0.34;
- for (size_t j=0; j<final_boxes.size(); j++)
- {
- if (lex->size() > 0)
- {
- if (find(lex->begin(), lex->end(), final_words[j]) == lex->end())
- {
- int best_match = -1;
- int best_dist = final_words[j].size();
- for (size_t l=0; l<lex->size(); l++)
- {
- int dist = edit_distance(lex->at(l),final_words[j]);
- if (dist < best_dist)
- {
- best_match = l;
- best_dist = dist;
- }
- }
- if (best_dist/final_words[j].size() < max_edit_distance_ratio)
- final_words[j] = lex->at(best_match);
- else
- continue;
- }
- }
- if ((find (lex->begin(), lex->end(), final_words[j])
- == lex->end()) && (is_word_spotting) && (selected_lex != 0))
- continue;
- // Output final recognition in csv format compatible with the ICDAR Competition
- /*cout << final_boxes[j].tl().x << ","
- << final_boxes[j].tl().y << ","
- << min(final_boxes[j].br().x,image.cols-2)
- << "," << final_boxes[j].tl().y << ","
- << min(final_boxes[j].br().x,image.cols-2) << ","
- << min(final_boxes[j].br().y,image.rows-2) << ","
- << final_boxes[j].tl().x << ","
- << min(final_boxes[j].br().y,image.rows-2) << ","
- << final_words[j] << endl ;*/
- returnedNum++;
- returnedNumEach++;
- bool matched = false;
- for (vector<word>::iterator it=example->words.begin(); it!=example->words.end(); ++it)
- {
- word &t = (*it);
- // ICDAR protocol accepts recognition up to the first non alphanumeric char
- string alnum_value = t.value;
- for (size_t c=0; c<alnum_value.size(); c++)
- {
- if (!isalnum(alnum_value[c]))
- {
- alnum_value = alnum_value.substr(0,c);
- break;
- }
- }
- std::transform(t.value.begin(), t.value.end(), t.value.begin(), char_toupper);
- if (((t.value==final_words[j]) || (alnum_value==final_words[j])) &&
- !(final_boxes[j].tl().x > t.x+t.width || final_boxes[j].br().x < t.x ||
- final_boxes[j].tl().y > t.y+t.height || final_boxes[j].br().y < t.y))
- {
- matched = true;
- returnedCorrectNum++;
- returnedCorrectNumEach++;
- //cout << "OK!" << endl;
- break;
- }
- }
- if (!matched) // Take care of dontcare regions t.value == "###"
- for (vector<word>::iterator it=example->words.begin(); it!=example->words.end(); ++it)
- {
- word &t = (*it);
- std::transform(t.value.begin(), t.value.end(), t.value.begin(), char_toupper);
- if ((t.value == "###") &&
- !(final_boxes[j].tl().x > t.x+t.width || final_boxes[j].br().x < t.x ||
- final_boxes[j].tl().y > t.y+t.height || final_boxes[j].br().y < t.y))
- {
- matched = true;
- returnedNum--;
- returnedNumEach--;
- //cout << "DontCare!" << endl;
- break;
- }
- }
- //if (!matched) cout << "FAIL." << endl;
- }
- double p = 0.0;
- if (0 != returnedNumEach)
- {
- p = 1.0*returnedCorrectNumEach/returnedNumEach;
- }
- double r = 0.0;
- if (0 != correctNumEach)
- {
- r = 1.0*returnedCorrectNumEach/correctNumEach;
- }
- double f1 = 0.0;
- if (0 != p+r)
- {
- f1 = 2*(p*r)/(p+r);
- }
- if ( (correctNumEach == 0) && (returnedNumEach == 0) )
- {
- p = 1.;
- r = 1.;
- f1 = 1.;
- }
- //printf("|%f|%f|%f|\n",r,p,f1);
- f1Each.push_back(f1);
- }
- double p = 1.0*returnedCorrectNum/returnedNum;
- double r = 1.0*returnedCorrectNum/correctNum;
- double f1 = 2*(p*r)/(p+r);
- printf("\n-------------------------------------------------------------------------\n");
- printf("ICDAR2015 -- Challenge 2: \"Focused Scene Text\" -- Task 4 \"End-to-End\"\n");
- if (is_word_spotting) printf(" Word spotting results -- ");
- else printf(" End-to-End recognition results -- ");
- switch (selected_lex)
- {
- case 0:
- printf("generic recognition (no given lexicon)\n");
- break;
- case 2:
- printf("weakly contextualized lexicon (624 words)\n");
- break;
- default:
- printf("strongly contextualized lexicon (100 words)\n");
- break;
- }
- printf(" Recall: %f | Precision: %f | F-score: %f\n", r, p, f1);
- printf("-------------------------------------------------------------------------\n\n");
- /*double mf1 = 0.0;
- for (vector<double>::iterator it=f1Each.begin(); it!=f1Each.end(); ++it)
- {
- mf1 += *it;
- }
- mf1 /= f1Each.size();
- printf("mean f1: %f\n", mf1);*/
- return 0;
- }
- #else
- int main()
- {
- std::cerr << "OpenCV was built without text module" << std::endl;
- return 0;
- }
- #endif // HAVE_OPENCV_TEXT
|