123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2014, Itseez Inc, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Itseez Inc or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "opencv2/core.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/datasets/fr_lfw.hpp"
- #include <iostream>
- #include <cstdio>
- #include <string>
- #include <vector>
- using namespace std;
- using namespace cv;
- using namespace cv::datasets;
- int main(int argc, const char *argv[])
- {
- const char *keys =
- "{ help h usage ? | | show this message }"
- "{ path p |true| path to dataset (lfw2 folder) }"
- "{ train t |dev | train method: 'dev'(pairsDevTrain.txt) or 'split'(pairs.txt) }";
- CommandLineParser parser(argc, argv, keys);
- string path(parser.get<string>("path"));
- if (parser.has("help") || path=="true")
- {
- parser.printMessage();
- return -1;
- }
- string trainMethod(parser.get<string>("train"));
- // our trained threshold for "same":
- double threshold = 0;
- // load dataset
- Ptr<FR_lfw> dataset = FR_lfw::create();
- dataset->load(path);
- unsigned int numSplits = dataset->getNumSplits();
- printf("splits number: %u\n", numSplits);
- if (trainMethod == "dev")
- printf("train size: %u\n", (unsigned int)dataset->getTrain().size());
- else
- printf("train size: %u\n", (numSplits-1) * (unsigned int)dataset->getTest().size());
- printf("test size: %u\n", (unsigned int)dataset->getTest().size());
- if (trainMethod == "dev") // train on personsDevTrain.txt
- {
- // collect average same-distances:
- double avg = 0;
- int count = 0;
- for (unsigned int i=0; i<dataset->getTrain().size(); ++i)
- {
- FR_lfwObj *example = static_cast<FR_lfwObj *>(dataset->getTrain()[i].get());
- Mat a = imread(path+example->image1, IMREAD_GRAYSCALE);
- Mat b = imread(path+example->image2, IMREAD_GRAYSCALE);
- double dist = norm(a,b);
- if (example->same)
- {
- avg += dist;
- count ++;
- }
- }
- threshold = avg / count;
- }
- vector<double> p;
- for (unsigned int j=0; j<numSplits; ++j)
- {
- if (trainMethod == "split") // train on the remaining 9 splits from pairs.txt
- {
- double avg = 0;
- int count = 0;
- for (unsigned int j2=0; j2<numSplits; ++j2)
- {
- if (j==j2) continue; // skip test split for training
- vector < Ptr<Object> > &curr = dataset->getTest(j2);
- for (unsigned int i=0; i<curr.size(); ++i)
- {
- FR_lfwObj *example = static_cast<FR_lfwObj *>(curr[i].get());
- Mat a = imread(path+example->image1, IMREAD_GRAYSCALE);
- Mat b = imread(path+example->image2, IMREAD_GRAYSCALE);
- double dist = norm(a,b);
- if (example->same)
- {
- avg += dist;
- count ++;
- }
- }
- }
- threshold = avg / count;
- }
- unsigned int incorrect = 0, correct = 0;
- vector < Ptr<Object> > &curr = dataset->getTest(j);
- for (unsigned int i=0; i<curr.size(); ++i)
- {
- FR_lfwObj *example = static_cast<FR_lfwObj *>(curr[i].get());
- Mat a = imread(path+example->image1, IMREAD_GRAYSCALE);
- Mat b = imread(path+example->image2, IMREAD_GRAYSCALE);
- bool same = (norm(a,b) <= threshold);
- if (same == example->same)
- correct++;
- else
- incorrect++;
- }
- p.push_back(1.0*correct/(correct+incorrect));
- printf("correct: %u, from: %u -> %f\n", correct, correct+incorrect, p.back());
- }
- double mu = 0.0;
- for (vector<double>::iterator it=p.begin(); it!=p.end(); ++it)
- {
- mu += *it;
- }
- mu /= p.size();
- double sigma = 0.0;
- for (vector<double>::iterator it=p.begin(); it!=p.end(); ++it)
- {
- sigma += (*it - mu)*(*it - mu);
- }
- sigma = sqrt(sigma/p.size());
- double se = sigma/sqrt(double(p.size()));
- printf("estimated mean accuracy: %f and the standard error of the mean: %f\n", mu, se);
- return 0;
- }
|