123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2014, Itseez Inc, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Itseez Inc or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "opencv2/datasets/ar_hmdb.hpp"
- #include "opencv2/datasets/util.hpp"
- #include <opencv2/core.hpp>
- #include <opencv2/flann.hpp>
- #include <opencv2/ml.hpp>
- #include <cstdio>
- #include <string>
- #include <vector>
- #include <fstream>
- using namespace std;
- using namespace cv;
- using namespace cv::datasets;
- using namespace cv::flann;
- using namespace cv::ml;
- void fillData(const string &path, vector< Ptr<Object> > &curr, Index &flann_index, Mat1f &data, Mat1i &labels);
- void fillData(const string &path, vector< Ptr<Object> > &curr, Index &flann_index, Mat1f &data, Mat1i &labels)
- {
- const unsigned int descriptorNum = 162;
- Mat1f sample(1, descriptorNum);
- Mat1i nresps(1, 1);
- Mat1f dists(1, 1);
- unsigned int numFiles = 0;
- for (unsigned int i=0; i<curr.size(); ++i)
- {
- AR_hmdbObj *example = static_cast<AR_hmdbObj *>(curr[i].get());
- string featuresFullPath = path + "hmdb51_org_stips/" + example->name + "/" + example->videoName + ".txt";
- ifstream infile(featuresFullPath.c_str());
- string line;
- // skip header
- for (unsigned int j=0; j<3; ++j)
- {
- getline(infile, line);
- }
- while (getline(infile, line))
- {
- // 7 skip, hog+hof: 72+90 read
- vector<string> elems;
- split(line, elems, '\t');
- for (unsigned int j=0; j<descriptorNum; ++j)
- {
- sample(0, j) = (float)atof(elems[j+7].c_str());
- }
- flann_index.knnSearch(sample, nresps, dists, 1, SearchParams());
- data(numFiles, nresps(0, 0)) ++;
- }
- labels(numFiles, 0) = example->id;
- numFiles++;
- }
- }
- int main(int argc, char *argv[])
- {
- const char *keys =
- "{ help h usage ? | | show this message }"
- "{ path p |true| path to dataset }";
- CommandLineParser parser(argc, argv, keys);
- string path(parser.get<string>("path"));
- if (parser.has("help") || path=="true")
- {
- parser.printMessage();
- return -1;
- }
- // loading dataset
- Ptr<AR_hmdb> dataset = AR_hmdb::create();
- dataset->load(path);
- int numSplits = dataset->getNumSplits();
- printf("splits number: %u\n", numSplits);
- const unsigned int descriptorNum = 162;
- const unsigned int clusterNum = 4000;
- const unsigned int sampleNum = 5613856; // max for all 3 splits
- vector<double> res;
- for (int currSplit=0; currSplit<numSplits; ++currSplit)
- {
- Mat1f samples(sampleNum, descriptorNum);
- unsigned int currSample = 0;
- vector< Ptr<Object> > &curr = dataset->getTrain(currSplit);
- unsigned int numFeatures = 0;
- for (unsigned int i=0; i<curr.size(); ++i)
- {
- AR_hmdbObj *example = static_cast<AR_hmdbObj *>(curr[i].get());
- string featuresFullPath = path + "hmdb51_org_stips/" + example->name + "/" + example->videoName + ".txt";
- ifstream infile(featuresFullPath.c_str());
- string line;
- // skip header
- for (unsigned int j=0; j<3; ++j)
- {
- getline(infile, line);
- }
- while (getline(infile, line))
- {
- numFeatures++;
- if (currSample < sampleNum)
- {
- // 7 skip, hog+hof: 72+90 read
- vector<string> elems;
- split(line, elems, '\t');
- for (unsigned int j=0; j<descriptorNum; ++j)
- {
- samples(currSample, j) = (float)atof(elems[j+7].c_str());
- }
- currSample++;
- }
- }
- }
- printf("split %u, train features number: %u, samples number: %u\n", currSplit, numFeatures, currSample);
- // clustering
- Mat1f centers(clusterNum, descriptorNum);
- ::cvflann::KMeansIndexParams kmean_params;
- unsigned int resultClusters = hierarchicalClustering< L2<float> >(samples, centers, kmean_params);
- if (resultClusters < clusterNum)
- {
- centers = centers.rowRange(Range(0, resultClusters));
- }
- Index flann_index(centers, KDTreeIndexParams());
- printf("resulted clusters number: %u\n", resultClusters);
- unsigned int numTrainFiles = curr.size();
- Mat1f trainData(numTrainFiles, resultClusters);
- Mat1i trainLabels(numTrainFiles, 1);
- for (unsigned int i=0; i<numTrainFiles; ++i)
- {
- for (unsigned int j=0; j<resultClusters; ++j)
- {
- trainData(i, j) = 0;
- }
- }
- printf("calculating train histograms\n");
- fillData(path, curr, flann_index, trainData, trainLabels);
- printf("train svm\n");
- Ptr<SVM> svm = SVM::create();
- svm->setType(SVM::C_SVC);
- svm->setKernel(SVM::POLY); //SVM::RBF;
- svm->setDegree(0.5);
- svm->setGamma(1);
- svm->setCoef0(1);
- svm->setC(1);
- svm->setNu(0.5);
- svm->setP(0);
- svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, 0.01));
- svm->train(trainData, ROW_SAMPLE, trainLabels);
- // prepare to predict
- curr = dataset->getTest(currSplit);
- unsigned int numTestFiles = curr.size();
- Mat1f testData(numTestFiles, resultClusters);
- Mat1i testLabels(numTestFiles, 1); // ground true
- for (unsigned int i=0; i<numTestFiles; ++i)
- {
- for (unsigned int j=0; j<resultClusters; ++j)
- {
- testData(i, j) = 0;
- }
- }
- printf("calculating test histograms\n");
- fillData(path, curr, flann_index, testData, testLabels);
- printf("predicting\n");
- Mat1f testPredicted(numTestFiles, 1);
- svm->predict(testData, testPredicted);
- unsigned int correct = 0;
- for (unsigned int i=0; i<numTestFiles; ++i)
- {
- if ((int)testPredicted(i, 0) == testLabels(i, 0))
- {
- correct++;
- }
- }
- double accuracy = 1.0*correct/numTestFiles;
- printf("correctly recognized actions: %f\n", accuracy);
- res.push_back(accuracy);
- }
- double accuracy = 0.0;
- for (unsigned int i=0; i<res.size(); ++i)
- {
- accuracy += res[i];
- }
- printf("average: %f\n", accuracy/res.size());
- return 0;
- }
|