123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- #ifdef HAVE_CUDA
- namespace opencv_test { namespace {
- //#define DUMP
- struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo>
- {
- cv::cuda::DeviceInfo devInfo;
- cv::Ptr<cv::cuda::HOG> hog;
- #ifdef DUMP
- std::ofstream f;
- #else
- std::ifstream f;
- #endif
- int wins_per_img_x;
- int wins_per_img_y;
- int blocks_per_win_x;
- int blocks_per_win_y;
- int block_hist_size;
- virtual void SetUp()
- {
- devInfo = GetParam();
- cv::cuda::setDevice(devInfo.deviceID());
- hog = cv::cuda::HOG::create();
- }
- #ifdef DUMP
- void dump(const std::vector<cv::Point>& locations)
- {
- int nlocations = locations.size();
- f.write((char*)&nlocations, sizeof(nlocations));
- for (int i = 0; i < locations.size(); ++i)
- f.write((char*)&locations[i], sizeof(locations[i]));
- }
- #else
- void compare(const std::vector<cv::Point>& locations)
- {
- // skip block_hists check
- int rows, cols;
- f.read((char*)&rows, sizeof(rows));
- f.read((char*)&cols, sizeof(cols));
- for (int i = 0; i < rows; ++i)
- {
- for (int j = 0; j < cols; ++j)
- {
- float val;
- f.read((char*)&val, sizeof(val));
- }
- }
- int nlocations;
- f.read((char*)&nlocations, sizeof(nlocations));
- ASSERT_EQ(nlocations, static_cast<int>(locations.size()));
- for (int i = 0; i < nlocations; ++i)
- {
- cv::Point location;
- f.read((char*)&location, sizeof(location));
- ASSERT_EQ(location, locations[i]);
- }
- }
- #endif
- void testDetect(const cv::Mat& img)
- {
- hog->setGammaCorrection(false);
- hog->setSVMDetector(hog->getDefaultPeopleDetector());
- std::vector<cv::Point> locations;
- // Test detect
- hog->detect(loadMat(img), locations);
- #ifdef DUMP
- dump(locations);
- #else
- compare(locations);
- #endif
- // Test detect on smaller image
- cv::Mat img2;
- cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2));
- hog->detect(loadMat(img2), locations);
- #ifdef DUMP
- dump(locations);
- #else
- compare(locations);
- #endif
- // Test detect on greater image
- cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2));
- hog->detect(loadMat(img2), locations);
- #ifdef DUMP
- dump(locations);
- #else
- compare(locations);
- #endif
- }
- };
- // desabled while resize does not fixed
- CUDA_TEST_P(HOG, detect)
- {
- cv::Mat img_rgb = readImage("hog/road.png");
- ASSERT_FALSE(img_rgb.empty());
- f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
- ASSERT_TRUE(f.is_open());
- // Test on color image
- cv::Mat img;
- cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
- testDetect(img);
- // Test on gray image
- cv::cvtColor(img_rgb, img, cv::COLOR_BGR2GRAY);
- testDetect(img);
- }
- CUDA_TEST_P(HOG, GetDescriptors)
- {
- // Load image (e.g. train data, composed from windows)
- cv::Mat img_rgb = readImage("hog/train_data.png");
- ASSERT_FALSE(img_rgb.empty());
- // Convert to C4
- cv::Mat img;
- cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
- cv::cuda::GpuMat d_img(img);
- // Convert train images into feature vectors (train table)
- cv::cuda::GpuMat descriptors, descriptors_by_cols;
- hog->setWinStride(Size(64, 128));
- hog->setDescriptorFormat(HOGDescriptor::DESCR_FORMAT_ROW_BY_ROW);
- hog->compute(d_img, descriptors);
- hog->setDescriptorFormat(HOGDescriptor::DESCR_FORMAT_COL_BY_COL);
- hog->compute(d_img, descriptors_by_cols);
- // Check size of the result train table
- wins_per_img_x = 3;
- wins_per_img_y = 2;
- blocks_per_win_x = 7;
- blocks_per_win_y = 15;
- block_hist_size = 36;
- cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size,
- wins_per_img_x * wins_per_img_y);
- ASSERT_EQ(descr_size_expected, descriptors.size());
- // Check both formats of output descriptors are handled correctly
- cv::Mat dr(descriptors);
- cv::Mat dc(descriptors_by_cols);
- for (int i = 0; i < wins_per_img_x * wins_per_img_y; ++i)
- {
- const float* l = dr.rowRange(i, i + 1).ptr<float>();
- const float* r = dc.rowRange(i, i + 1).ptr<float>();
- for (int y = 0; y < blocks_per_win_y; ++y)
- for (int x = 0; x < blocks_per_win_x; ++x)
- for (int k = 0; k < block_hist_size; ++k)
- ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k],
- r[(x * blocks_per_win_y + y) * block_hist_size + k]);
- }
- }
- /*
- INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, HOG, ALL_DEVICES);
- */
- //============== caltech hog tests =====================//
- struct CalTech : public ::testing::TestWithParam<tuple<cv::cuda::DeviceInfo, std::string> >
- {
- cv::cuda::DeviceInfo devInfo;
- cv::Mat img;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- cv::cuda::setDevice(devInfo.deviceID());
- img = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
- ASSERT_FALSE(img.empty());
- }
- };
- CUDA_TEST_P(CalTech, HOG)
- {
- cv::cuda::GpuMat d_img(img);
- cv::Mat markedImage(img.clone());
- cv::Ptr<cv::cuda::HOG> d_hog = cv::cuda::HOG::create();
- d_hog->setSVMDetector(d_hog->getDefaultPeopleDetector());
- d_hog->setNumLevels(d_hog->getNumLevels() + 32);
- std::vector<cv::Rect> found_locations;
- d_hog->detectMultiScale(d_img, found_locations);
- #if defined (LOG_CASCADE_STATISTIC)
- for (int i = 0; i < (int)found_locations.size(); i++)
- {
- cv::Rect r = found_locations[i];
- std::cout << r.x << " " << r.y << " " << r.width << " " << r.height << std::endl;
- cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
- }
- cv::imshow("Res", markedImage);
- cv::waitKey();
- #endif
- }
- INSTANTIATE_TEST_CASE_P(detect, CalTech, testing::Combine(ALL_DEVICES,
- ::testing::Values<std::string>("caltech/image_00000009_0.png", "caltech/image_00000032_0.png",
- "caltech/image_00000165_0.png", "caltech/image_00000261_0.png", "caltech/image_00000469_0.png",
- "caltech/image_00000527_0.png", "caltech/image_00000574_0.png")));
- //------------------------variable GPU HOG Tests------------------------//
- struct Hog_var : public ::testing::TestWithParam<tuple<cv::cuda::DeviceInfo, std::string> >
- {
- cv::cuda::DeviceInfo devInfo;
- cv::Mat img, c_img;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- cv::cuda::setDevice(devInfo.deviceID());
- cv::Rect roi(0, 0, 16, 32);
- img = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
- ASSERT_FALSE(img.empty());
- c_img = img(roi);
- }
- };
- CUDA_TEST_P(Hog_var, HOG)
- {
- cv::cuda::GpuMat _img(c_img);
- cv::cuda::GpuMat d_img;
- int win_stride_width = 8;int win_stride_height = 8;
- int win_width = 16;
- int block_width = 8;
- int block_stride_width = 4;int block_stride_height = 4;
- int cell_width = 4;
- int nbins = 9;
- Size win_stride(win_stride_width, win_stride_height);
- Size win_size(win_width, win_width * 2);
- Size block_size(block_width, block_width);
- Size block_stride(block_stride_width, block_stride_height);
- Size cell_size(cell_width, cell_width);
- cv::Ptr<cv::cuda::HOG> gpu_hog = cv::cuda::HOG::create(win_size, block_size, block_stride, cell_size, nbins);
- gpu_hog->setNumLevels(13);
- gpu_hog->setHitThreshold(0);
- gpu_hog->setWinStride(win_stride);
- gpu_hog->setScaleFactor(1.05);
- gpu_hog->setGroupThreshold(8);
- gpu_hog->compute(_img, d_img);
- vector<float> gpu_desc_vec;
- ASSERT_TRUE(gpu_desc_vec.empty());
- cv::Mat R(d_img);
- cv::HOGDescriptor cpu_hog(win_size, block_size, block_stride, cell_size, nbins);
- cpu_hog.nlevels = 13;
- vector<float> cpu_desc_vec;
- ASSERT_TRUE(cpu_desc_vec.empty());
- cpu_hog.compute(c_img, cpu_desc_vec, win_stride, Size(0,0));
- }
- INSTANTIATE_TEST_CASE_P(detect, Hog_var, testing::Combine(ALL_DEVICES,
- ::testing::Values<std::string>("/hog/road.png")));
- struct Hog_var_cell : public ::testing::TestWithParam<tuple<cv::cuda::DeviceInfo, std::string> >
- {
- cv::cuda::DeviceInfo devInfo;
- cv::Mat img, c_img, c_img2, c_img3, c_img4;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- cv::cuda::setDevice(devInfo.deviceID());
- cv::Rect roi(0, 0, 48, 96);
- img = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
- ASSERT_FALSE(img.empty());
- c_img = img(roi);
- cv::Rect roi2(0, 0, 54, 108);
- c_img2 = img(roi2);
- cv::Rect roi3(0, 0, 64, 128);
- c_img3 = img(roi3);
- cv::Rect roi4(0, 0, 32, 64);
- c_img4 = img(roi4);
- }
- };
- CUDA_TEST_P(Hog_var_cell, HOG)
- {
- cv::cuda::GpuMat _img(c_img);
- cv::cuda::GpuMat _img2(c_img2);
- cv::cuda::GpuMat _img3(c_img3);
- cv::cuda::GpuMat _img4(c_img4);
- cv::cuda::GpuMat d_img;
- ASSERT_FALSE(_img.empty());
- ASSERT_TRUE(d_img.empty());
- int win_stride_width = 8;int win_stride_height = 8;
- int win_width = 48;
- int block_width = 16;
- int block_stride_width = 8;int block_stride_height = 8;
- int cell_width = 8;
- int nbins = 9;
- Size win_stride(win_stride_width, win_stride_height);
- Size win_size(win_width, win_width * 2);
- Size block_size(block_width, block_width);
- Size block_stride(block_stride_width, block_stride_height);
- Size cell_size(cell_width, cell_width);
- cv::Ptr<cv::cuda::HOG> gpu_hog = cv::cuda::HOG::create(win_size, block_size, block_stride, cell_size, nbins);
- gpu_hog->setNumLevels(13);
- gpu_hog->setHitThreshold(0);
- gpu_hog->setWinStride(win_stride);
- gpu_hog->setScaleFactor(1.05);
- gpu_hog->setGroupThreshold(8);
- gpu_hog->compute(_img, d_img);
- //------------------------------------------------------------------------------
- cv::cuda::GpuMat d_img2;
- ASSERT_TRUE(d_img2.empty());
- int win_stride_width2 = 8;int win_stride_height2 = 8;
- int win_width2 = 48;
- int block_width2 = 16;
- int block_stride_width2 = 8;int block_stride_height2 = 8;
- int cell_width2 = 4;
- Size win_stride2(win_stride_width2, win_stride_height2);
- Size win_size2(win_width2, win_width2 * 2);
- Size block_size2(block_width2, block_width2);
- Size block_stride2(block_stride_width2, block_stride_height2);
- Size cell_size2(cell_width2, cell_width2);
- cv::Ptr<cv::cuda::HOG> gpu_hog2 = cv::cuda::HOG::create(win_size2, block_size2, block_stride2, cell_size2, nbins);
- gpu_hog2->setWinStride(win_stride2);
- gpu_hog2->compute(_img, d_img2);
- //------------------------------------------------------------------------------
- cv::cuda::GpuMat d_img3;
- ASSERT_TRUE(d_img3.empty());
- int win_stride_width3 = 9;int win_stride_height3 = 9;
- int win_width3 = 54;
- int block_width3 = 18;
- int block_stride_width3 = 9;int block_stride_height3 = 9;
- int cell_width3 = 6;
- Size win_stride3(win_stride_width3, win_stride_height3);
- Size win_size3(win_width3, win_width3 * 2);
- Size block_size3(block_width3, block_width3);
- Size block_stride3(block_stride_width3, block_stride_height3);
- Size cell_size3(cell_width3, cell_width3);
- cv::Ptr<cv::cuda::HOG> gpu_hog3 = cv::cuda::HOG::create(win_size3, block_size3, block_stride3, cell_size3, nbins);
- gpu_hog3->setWinStride(win_stride3);
- gpu_hog3->compute(_img2, d_img3);
- //------------------------------------------------------------------------------
- cv::cuda::GpuMat d_img4;
- ASSERT_TRUE(d_img4.empty());
- int win_stride_width4 = 16;int win_stride_height4 = 16;
- int win_width4 = 64;
- int block_width4 = 32;
- int block_stride_width4 = 16;int block_stride_height4 = 16;
- int cell_width4 = 8;
- Size win_stride4(win_stride_width4, win_stride_height4);
- Size win_size4(win_width4, win_width4 * 2);
- Size block_size4(block_width4, block_width4);
- Size block_stride4(block_stride_width4, block_stride_height4);
- Size cell_size4(cell_width4, cell_width4);
- cv::Ptr<cv::cuda::HOG> gpu_hog4 = cv::cuda::HOG::create(win_size4, block_size4, block_stride4, cell_size4, nbins);
- gpu_hog4->setWinStride(win_stride4);
- gpu_hog4->compute(_img3, d_img4);
- //------------------------------------------------------------------------------
- cv::cuda::GpuMat d_img5;
- ASSERT_TRUE(d_img5.empty());
- int win_stride_width5 = 16;int win_stride_height5 = 16;
- int win_width5 = 64;
- int block_width5 = 32;
- int block_stride_width5 = 16;int block_stride_height5 = 16;
- int cell_width5 = 16;
- Size win_stride5(win_stride_width5, win_stride_height5);
- Size win_size5(win_width5, win_width5 * 2);
- Size block_size5(block_width5, block_width5);
- Size block_stride5(block_stride_width5, block_stride_height5);
- Size cell_size5(cell_width5, cell_width5);
- cv::Ptr<cv::cuda::HOG> gpu_hog5 = cv::cuda::HOG::create(win_size5, block_size5, block_stride5, cell_size5, nbins);
- gpu_hog5->setWinStride(win_stride5);
- gpu_hog5->compute(_img3, d_img5);
- //------------------------------------------------------------------------------
- }
- INSTANTIATE_TEST_CASE_P(detect, Hog_var_cell, testing::Combine(ALL_DEVICES,
- ::testing::Values<std::string>("/hog/road.png")));
- //////////////////////////////////////////////////////////////////////////////////////////
- /// LBP classifier
- PARAM_TEST_CASE(LBP_Read_classifier, cv::cuda::DeviceInfo, int)
- {
- cv::cuda::DeviceInfo devInfo;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- cv::cuda::setDevice(devInfo.deviceID());
- }
- };
- CUDA_TEST_P(LBP_Read_classifier, Accuracy)
- {
- std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
- cv::Ptr<cv::cuda::CascadeClassifier> d_cascade;
- ASSERT_NO_THROW(
- d_cascade = cv::cuda::CascadeClassifier::create(classifierXmlPath);
- );
- ASSERT_FALSE(d_cascade.empty());
- }
- INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, LBP_Read_classifier,
- testing::Combine(ALL_DEVICES, testing::Values<int>(0)));
- PARAM_TEST_CASE(LBP_classify, cv::cuda::DeviceInfo, int)
- {
- cv::cuda::DeviceInfo devInfo;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- cv::cuda::setDevice(devInfo.deviceID());
- }
- };
- CUDA_TEST_P(LBP_classify, Accuracy)
- {
- std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
- std::string imagePath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/er.png";
- cv::CascadeClassifier cpuClassifier(classifierXmlPath);
- ASSERT_FALSE(cpuClassifier.empty());
- cv::Mat image = cv::imread(imagePath);
- image = image.colRange(0, image.cols/2);
- cv::Mat grey;
- cvtColor(image, grey, cv::COLOR_BGR2GRAY);
- ASSERT_FALSE(image.empty());
- std::vector<cv::Rect> rects;
- cpuClassifier.detectMultiScale(grey, rects);
- cv::Mat markedImage = image.clone();
- std::vector<cv::Rect>::iterator it = rects.begin();
- for (; it != rects.end(); ++it)
- cv::rectangle(markedImage, *it, cv::Scalar(255, 0, 0));
- cv::Ptr<cv::cuda::CascadeClassifier> gpuClassifier =
- cv::cuda::CascadeClassifier::create(classifierXmlPath);
- cv::cuda::GpuMat tested(grey);
- cv::cuda::GpuMat gpu_rects_buf;
- gpuClassifier->detectMultiScale(tested, gpu_rects_buf);
- std::vector<cv::Rect> gpu_rects;
- gpuClassifier->convert(gpu_rects_buf, gpu_rects);
- #if defined (LOG_CASCADE_STATISTIC)
- for (size_t i = 0; i < gpu_rects.size(); i++)
- {
- cv::Rect r = gpu_rects[i];
- std::cout << r.x << " " << r.y << " " << r.width << " " << r.height << std::endl;
- cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
- }
- cv::imshow("Res", markedImage);
- cv::waitKey();
- #endif
- }
- INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, LBP_classify,
- testing::Combine(ALL_DEVICES, testing::Values<int>(0)));
- }} // namespace
- #endif // HAVE_CUDA
|