123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace
- {
- // http://www.christian-seiler.de/projekte/fpmath/
- class FpuControl
- {
- public:
- FpuControl();
- ~FpuControl();
- private:
- #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) && !defined(__aarch64__) && !defined(__powerpc64__)
- fpu_control_t fpu_oldcw, fpu_cw;
- #elif defined(_WIN32) && !defined(_WIN64)
- unsigned int fpu_oldcw, fpu_cw;
- #endif
- };
- FpuControl::FpuControl()
- {
- #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) && !defined(__aarch64__) && !defined(__powerpc64__)
- _FPU_GETCW(fpu_oldcw);
- fpu_cw = (fpu_oldcw & ~_FPU_EXTENDED & ~_FPU_DOUBLE & ~_FPU_SINGLE) | _FPU_SINGLE;
- _FPU_SETCW(fpu_cw);
- #elif defined(_WIN32) && !defined(_WIN64)
- _controlfp_s(&fpu_cw, 0, 0);
- fpu_oldcw = fpu_cw;
- _controlfp_s(&fpu_cw, _PC_24, _MCW_PC);
- #endif
- }
- FpuControl::~FpuControl()
- {
- #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) && !defined(__aarch64__) && !defined(__powerpc64__)
- _FPU_SETCW(fpu_oldcw);
- #elif defined(_WIN32) && !defined(_WIN64)
- _controlfp_s(&fpu_cw, fpu_oldcw, _MCW_PC);
- #endif
- }
- }
- TestHaarCascadeApplication::TestHaarCascadeApplication(std::string testName_, NCVTestSourceProvider<Ncv8u> &src_,
- std::string cascadeName_, Ncv32u width_, Ncv32u height_)
- :
- NCVTestProvider(testName_),
- src(src_),
- cascadeName(cascadeName_),
- width(width_),
- height(height_)
- {
- }
- bool TestHaarCascadeApplication::toString(std::ofstream &strOut)
- {
- strOut << "cascadeName=" << cascadeName << std::endl;
- strOut << "width=" << width << std::endl;
- strOut << "height=" << height << std::endl;
- return true;
- }
- bool TestHaarCascadeApplication::init()
- {
- return true;
- }
- bool TestHaarCascadeApplication::process()
- {
- NCVStatus ncvStat;
- bool rcode = false;
- Ncv32u numStages, numNodes, numFeatures;
- ncvStat = ncvHaarGetClassifierSize(this->cascadeName, numStages, numNodes, numFeatures);
- ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
- NCVVectorAlloc<HaarStage64> h_HaarStages(*this->allocatorCPU.get(), numStages);
- ncvAssertReturn(h_HaarStages.isMemAllocated(), false);
- NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(*this->allocatorCPU.get(), numNodes);
- ncvAssertReturn(h_HaarNodes.isMemAllocated(), false);
- NCVVectorAlloc<HaarFeature64> h_HaarFeatures(*this->allocatorCPU.get(), numFeatures);
- ncvAssertReturn(h_HaarFeatures.isMemAllocated(), false);
- NCVVectorAlloc<HaarStage64> d_HaarStages(*this->allocatorGPU.get(), numStages);
- ncvAssertReturn(d_HaarStages.isMemAllocated(), false);
- NCVVectorAlloc<HaarClassifierNode128> d_HaarNodes(*this->allocatorGPU.get(), numNodes);
- ncvAssertReturn(d_HaarNodes.isMemAllocated(), false);
- NCVVectorAlloc<HaarFeature64> d_HaarFeatures(*this->allocatorGPU.get(), numFeatures);
- ncvAssertReturn(d_HaarFeatures.isMemAllocated(), false);
- HaarClassifierCascadeDescriptor haar;
- haar.ClassifierSize.width = haar.ClassifierSize.height = 1;
- haar.bNeedsTiltedII = false;
- haar.NumClassifierRootNodes = numNodes;
- haar.NumClassifierTotalNodes = numNodes;
- haar.NumFeatures = numFeatures;
- haar.NumStages = numStages;
- NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
- NCV_SKIP_COND_BEGIN
- ncvStat = ncvHaarLoadFromFile_host(this->cascadeName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures);
- ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
- ncvAssertReturn(NCV_SUCCESS == h_HaarStages.copySolid(d_HaarStages, 0), false);
- ncvAssertReturn(NCV_SUCCESS == h_HaarNodes.copySolid(d_HaarNodes, 0), false);
- ncvAssertReturn(NCV_SUCCESS == h_HaarFeatures.copySolid(d_HaarFeatures, 0), false);
- ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);
- NCV_SKIP_COND_END
- NcvSize32s srcRoi, srcIIRoi, searchRoi;
- srcRoi.width = this->width;
- srcRoi.height = this->height;
- srcIIRoi.width = srcRoi.width + 1;
- srcIIRoi.height = srcRoi.height + 1;
- searchRoi.width = srcIIRoi.width - haar.ClassifierSize.width;
- searchRoi.height = srcIIRoi.height - haar.ClassifierSize.height;
- if (searchRoi.width <= 0 || searchRoi.height <= 0)
- {
- return false;
- }
- NcvSize32u searchRoiU(searchRoi.width, searchRoi.height);
- NCVMatrixAlloc<Ncv8u> d_img(*this->allocatorGPU.get(), this->width, this->height);
- ncvAssertReturn(d_img.isMemAllocated(), false);
- NCVMatrixAlloc<Ncv8u> h_img(*this->allocatorCPU.get(), this->width, this->height);
- ncvAssertReturn(h_img.isMemAllocated(), false);
- Ncv32u integralWidth = this->width + 1;
- Ncv32u integralHeight = this->height + 1;
- NCVMatrixAlloc<Ncv32u> d_integralImage(*this->allocatorGPU.get(), integralWidth, integralHeight);
- ncvAssertReturn(d_integralImage.isMemAllocated(), false);
- NCVMatrixAlloc<Ncv64u> d_sqIntegralImage(*this->allocatorGPU.get(), integralWidth, integralHeight);
- ncvAssertReturn(d_sqIntegralImage.isMemAllocated(), false);
- NCVMatrixAlloc<Ncv32u> h_integralImage(*this->allocatorCPU.get(), integralWidth, integralHeight);
- ncvAssertReturn(h_integralImage.isMemAllocated(), false);
- NCVMatrixAlloc<Ncv64u> h_sqIntegralImage(*this->allocatorCPU.get(), integralWidth, integralHeight);
- ncvAssertReturn(h_sqIntegralImage.isMemAllocated(), false);
- NCVMatrixAlloc<Ncv32f> d_rectStdDev(*this->allocatorGPU.get(), this->width, this->height);
- ncvAssertReturn(d_rectStdDev.isMemAllocated(), false);
- NCVMatrixAlloc<Ncv32u> d_pixelMask(*this->allocatorGPU.get(), this->width, this->height);
- ncvAssertReturn(d_pixelMask.isMemAllocated(), false);
- NCVMatrixAlloc<Ncv32f> h_rectStdDev(*this->allocatorCPU.get(), this->width, this->height);
- ncvAssertReturn(h_rectStdDev.isMemAllocated(), false);
- NCVMatrixAlloc<Ncv32u> h_pixelMask(*this->allocatorCPU.get(), this->width, this->height);
- ncvAssertReturn(h_pixelMask.isMemAllocated(), false);
- NCVVectorAlloc<NcvRect32u> d_hypotheses(*this->allocatorGPU.get(), this->width * this->height);
- ncvAssertReturn(d_hypotheses.isMemAllocated(), false);
- NCVVectorAlloc<NcvRect32u> h_hypotheses(*this->allocatorCPU.get(), this->width * this->height);
- ncvAssertReturn(h_hypotheses.isMemAllocated(), false);
- NCVStatus nppStat;
- Ncv32u szTmpBufIntegral, szTmpBufSqIntegral;
- nppStat = nppiStIntegralGetSize_8u32u(NcvSize32u(this->width, this->height), &szTmpBufIntegral, this->devProp);
- ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
- nppStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(this->width, this->height), &szTmpBufSqIntegral, this->devProp);
- ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
- NCVVectorAlloc<Ncv8u> d_tmpIIbuf(*this->allocatorGPU.get(), std::max(szTmpBufIntegral, szTmpBufSqIntegral));
- ncvAssertReturn(d_tmpIIbuf.isMemAllocated(), false);
- Ncv32u detectionsOnThisScale_d = 0;
- Ncv32u detectionsOnThisScale_h = 0;
- NCV_SKIP_COND_BEGIN
- ncvAssertReturn(this->src.fill(h_img), false);
- ncvStat = h_img.copySolid(d_img, 0);
- ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
- ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);
- nppStat = nppiStIntegral_8u32u_C1R(d_img.ptr(), d_img.pitch(),
- d_integralImage.ptr(), d_integralImage.pitch(),
- NcvSize32u(d_img.width(), d_img.height()),
- d_tmpIIbuf.ptr(), szTmpBufIntegral, this->devProp);
- ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
- nppStat = nppiStSqrIntegral_8u64u_C1R(d_img.ptr(), d_img.pitch(),
- d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(),
- NcvSize32u(d_img.width(), d_img.height()),
- d_tmpIIbuf.ptr(), szTmpBufSqIntegral, this->devProp);
- ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
- const NcvRect32u rect(
- HAAR_STDDEV_BORDER,
- HAAR_STDDEV_BORDER,
- haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER,
- haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER);
- nppStat = nppiStRectStdDev_32f_C1R(
- d_integralImage.ptr(), d_integralImage.pitch(),
- d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(),
- d_rectStdDev.ptr(), d_rectStdDev.pitch(),
- NcvSize32u(searchRoi.width, searchRoi.height), rect,
- 1.0f, true);
- ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
- ncvStat = d_integralImage.copySolid(h_integralImage, 0);
- ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
- ncvStat = d_rectStdDev.copySolid(h_rectStdDev, 0);
- ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
- for (Ncv32u i=0; i<searchRoiU.height; i++)
- {
- for (Ncv32u j=0; j<h_pixelMask.stride(); j++)
- {
- if (j<searchRoiU.width)
- {
- h_pixelMask.ptr()[i*h_pixelMask.stride()+j] = (i << 16) | j;
- }
- else
- {
- h_pixelMask.ptr()[i*h_pixelMask.stride()+j] = OBJDET_MASK_ELEMENT_INVALID_32U;
- }
- }
- }
- ncvAssertReturn(cudaSuccess == cudaStreamSynchronize(0), false);
- {
- // calculations here
- FpuControl fpu;
- CV_UNUSED(fpu);
- ncvStat = ncvApplyHaarClassifierCascade_host(
- h_integralImage, h_rectStdDev, h_pixelMask,
- detectionsOnThisScale_h,
- haar, h_HaarStages, h_HaarNodes, h_HaarFeatures, false,
- searchRoiU, 1, 1.0f);
- ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
- }
- NCV_SKIP_COND_END
- int devId;
- ncvAssertCUDAReturn(cudaGetDevice(&devId), false);
- cudaDeviceProp _devProp;
- ncvAssertCUDAReturn(cudaGetDeviceProperties(&_devProp, devId), false);
- ncvStat = ncvApplyHaarClassifierCascade_device(
- d_integralImage, d_rectStdDev, d_pixelMask,
- detectionsOnThisScale_d,
- haar, h_HaarStages, d_HaarStages, d_HaarNodes, d_HaarFeatures, false,
- searchRoiU, 1, 1.0f,
- *this->allocatorGPU.get(), *this->allocatorCPU.get(),
- _devProp, 0);
- ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
- NCVMatrixAlloc<Ncv32u> h_pixelMask_d(*this->allocatorCPU.get(), this->width, this->height);
- ncvAssertReturn(h_pixelMask_d.isMemAllocated(), false);
- //bit-to-bit check
- bool bLoopVirgin = true;
- NCV_SKIP_COND_BEGIN
- ncvStat = d_pixelMask.copySolid(h_pixelMask_d, 0);
- ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
- if (detectionsOnThisScale_d != detectionsOnThisScale_h)
- {
- bLoopVirgin = false;
- }
- else
- {
- std::sort(h_pixelMask_d.ptr(), h_pixelMask_d.ptr() + detectionsOnThisScale_d);
- for (Ncv32u i=0; i<detectionsOnThisScale_d && bLoopVirgin; i++)
- {
- if (h_pixelMask.ptr()[i] != h_pixelMask_d.ptr()[i])
- {
- bLoopVirgin = false;
- }
- }
- }
- NCV_SKIP_COND_END
- if (bLoopVirgin)
- {
- rcode = true;
- }
- return rcode;
- }
- bool TestHaarCascadeApplication::deinit()
- {
- return true;
- }
|