123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- #ifdef HAVE_CUDA
- namespace opencv_test { namespace {
- ////////////////////////////////////////////////////////////////////////////////
- // MatchTemplate8U
- CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)
- #define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_CCOEFF_NORMED))
- namespace
- {
- IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
- }
- PARAM_TEST_CASE(MatchTemplate8U, cv::cuda::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
- {
- cv::cuda::DeviceInfo devInfo;
- cv::Size size;
- cv::Size templ_size;
- int cn;
- int method;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- size = GET_PARAM(1);
- templ_size = GET_PARAM(2);
- cn = GET_PARAM(3);
- method = GET_PARAM(4);
- cv::cuda::setDevice(devInfo.deviceID());
- }
- };
- CUDA_TEST_P(MatchTemplate8U, Accuracy)
- {
- cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
- cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
- cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(image.type(), method);
- cv::cuda::GpuMat dst;
- alg->match(loadMat(image), loadMat(templ), dst);
- cv::Mat dst_gold;
- cv::matchTemplate(image, templ, dst_gold, method);
- cv::Mat h_dst(dst);
- ASSERT_EQ(dst_gold.size(), h_dst.size());
- ASSERT_EQ(dst_gold.type(), h_dst.type());
- for (int y = 0; y < h_dst.rows; ++y)
- {
- for (int x = 0; x < h_dst.cols; ++x)
- {
- float gold_val = dst_gold.at<float>(y, x);
- float actual_val = dst_gold.at<float>(y, x);
- ASSERT_FLOAT_EQ(gold_val, actual_val) << y << ", " << x;
- }
- }
- }
- INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, MatchTemplate8U, testing::Combine(
- ALL_DEVICES,
- DIFFERENT_SIZES,
- testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))),
- testing::Values(Channels(1), Channels(3), Channels(4)),
- ALL_TEMPLATE_METHODS));
- ////////////////////////////////////////////////////////////////////////////////
- // MatchTemplate32F
- PARAM_TEST_CASE(MatchTemplate32F, cv::cuda::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
- {
- cv::cuda::DeviceInfo devInfo;
- cv::Size size;
- cv::Size templ_size;
- int cn;
- int method;
- int n, m, h, w;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- size = GET_PARAM(1);
- templ_size = GET_PARAM(2);
- cn = GET_PARAM(3);
- method = GET_PARAM(4);
- cv::cuda::setDevice(devInfo.deviceID());
- }
- };
- CUDA_TEST_P(MatchTemplate32F, Regression)
- {
- cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
- cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
- cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(image.type(), method);
- cv::cuda::GpuMat dst;
- alg->match(loadMat(image), loadMat(templ), dst);
- cv::Mat dst_gold;
- cv::matchTemplate(image, templ, dst_gold, method);
- cv::Mat h_dst(dst);
- ASSERT_EQ(dst_gold.size(), h_dst.size());
- ASSERT_EQ(dst_gold.type(), h_dst.type());
- for (int y = 0; y < h_dst.rows; ++y)
- {
- for (int x = 0; x < h_dst.cols; ++x)
- {
- float gold_val = dst_gold.at<float>(y, x);
- float actual_val = dst_gold.at<float>(y, x);
- ASSERT_FLOAT_EQ(gold_val, actual_val) << y << ", " << x;
- }
- }
- }
- INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, MatchTemplate32F, testing::Combine(
- ALL_DEVICES,
- DIFFERENT_SIZES,
- testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))),
- testing::Values(Channels(1), Channels(3), Channels(4)),
- testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR))));
- ////////////////////////////////////////////////////////////////////////////////
- // MatchTemplateBlackSource
- PARAM_TEST_CASE(MatchTemplateBlackSource, cv::cuda::DeviceInfo, TemplateMethod)
- {
- cv::cuda::DeviceInfo devInfo;
- int method;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- method = GET_PARAM(1);
- cv::cuda::setDevice(devInfo.deviceID());
- }
- };
- CUDA_TEST_P(MatchTemplateBlackSource, Accuracy)
- {
- cv::Mat image = readImage("matchtemplate/black.png");
- ASSERT_FALSE(image.empty());
- cv::Mat pattern = readImage("matchtemplate/cat.png");
- ASSERT_FALSE(pattern.empty());
- cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(image.type(), method);
- cv::cuda::GpuMat d_dst;
- alg->match(loadMat(image), loadMat(pattern), d_dst);
- cv::Mat dst(d_dst);
- double maxValue;
- cv::Point maxLoc;
- cv::minMaxLoc(dst, NULL, &maxValue, NULL, &maxLoc);
- cv::Point maxLocGold = cv::Point(284, 12);
- ASSERT_EQ(maxLocGold, maxLoc);
- }
- INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, MatchTemplateBlackSource, testing::Combine(
- ALL_DEVICES,
- testing::Values(TemplateMethod(cv::TM_CCOEFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED))));
- ////////////////////////////////////////////////////////////////////////////////
- // MatchTemplate_CCOEF_NORMED
- PARAM_TEST_CASE(MatchTemplate_CCOEF_NORMED, cv::cuda::DeviceInfo, std::pair<std::string, std::string>)
- {
- cv::cuda::DeviceInfo devInfo;
- std::string imageName;
- std::string patternName;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- imageName = GET_PARAM(1).first;
- patternName = GET_PARAM(1).second;
- cv::cuda::setDevice(devInfo.deviceID());
- }
- };
- CUDA_TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy)
- {
- cv::Mat image = readImage(imageName);
- ASSERT_FALSE(image.empty());
- cv::Mat pattern = readImage(patternName);
- ASSERT_FALSE(pattern.empty());
- cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(image.type(), cv::TM_CCOEFF_NORMED);
- cv::cuda::GpuMat d_dst;
- alg->match(loadMat(image), loadMat(pattern), d_dst);
- cv::Mat dst(d_dst);
- cv::Point minLoc, maxLoc;
- double minVal, maxVal;
- cv::minMaxLoc(dst, &minVal, &maxVal, &minLoc, &maxLoc);
- cv::Mat dstGold;
- cv::matchTemplate(image, pattern, dstGold, cv::TM_CCOEFF_NORMED);
- double minValGold, maxValGold;
- cv::Point minLocGold, maxLocGold;
- cv::minMaxLoc(dstGold, &minValGold, &maxValGold, &minLocGold, &maxLocGold);
- ASSERT_EQ(minLocGold, minLoc);
- ASSERT_EQ(maxLocGold, maxLoc);
- ASSERT_LE(maxVal, 1.0);
- ASSERT_GE(minVal, -1.0);
- }
- INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, MatchTemplate_CCOEF_NORMED, testing::Combine(
- ALL_DEVICES,
- testing::Values(std::make_pair(std::string("matchtemplate/source-0.png"), std::string("matchtemplate/target-0.png")))));
- ////////////////////////////////////////////////////////////////////////////////
- // MatchTemplate_CanFindBigTemplate
- struct MatchTemplate_CanFindBigTemplate : testing::TestWithParam<cv::cuda::DeviceInfo>
- {
- cv::cuda::DeviceInfo devInfo;
- virtual void SetUp()
- {
- devInfo = GetParam();
- cv::cuda::setDevice(devInfo.deviceID());
- }
- };
- CUDA_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
- {
- cv::Mat scene = readImage("matchtemplate/scene.png");
- ASSERT_FALSE(scene.empty());
- cv::Mat templ = readImage("matchtemplate/template.png");
- ASSERT_FALSE(templ.empty());
- cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(scene.type(), cv::TM_SQDIFF_NORMED);
- cv::cuda::GpuMat d_result;
- alg->match(loadMat(scene), loadMat(templ), d_result);
- cv::Mat result(d_result);
- double minVal;
- cv::Point minLoc;
- cv::minMaxLoc(result, &minVal, 0, &minLoc, 0);
- ASSERT_GE(minVal, 0);
- ASSERT_LT(minVal, 1e-3);
- ASSERT_EQ(344, minLoc.x);
- ASSERT_EQ(0, minLoc.y);
- }
- CUDA_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF)
- {
- cv::Mat scene = readImage("matchtemplate/scene.png");
- ASSERT_FALSE(scene.empty());
- cv::Mat templ = readImage("matchtemplate/template.png");
- ASSERT_FALSE(templ.empty());
- cv::Ptr<cv::cuda::TemplateMatching> alg = cv::cuda::createTemplateMatching(scene.type(), cv::TM_SQDIFF);
- cv::cuda::GpuMat d_result;
- alg->match(loadMat(scene), loadMat(templ), d_result);
- cv::Mat result(d_result);
- double minVal;
- cv::Point minLoc;
- cv::minMaxLoc(result, &minVal, 0, &minLoc, 0);
- ASSERT_GE(minVal, 0);
- ASSERT_EQ(344, minLoc.x);
- ASSERT_EQ(0, minLoc.y);
- }
- INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, MatchTemplate_CanFindBigTemplate, ALL_DEVICES);
- }} // namespace
- #endif // HAVE_CUDA
|