123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "perf_precomp.hpp"
- namespace opencv_test { namespace {
- //////////////////////////////////////////////////////////////////////
- // HoughLines
- namespace
- {
- struct Vec4iComparator
- {
- bool operator()(const cv::Vec4i& a, const cv::Vec4i b) const
- {
- if (a[0] != b[0]) return a[0] < b[0];
- else if(a[1] != b[1]) return a[1] < b[1];
- else if(a[2] != b[2]) return a[2] < b[2];
- else return a[3] < b[3];
- }
- };
- struct Vec3fComparator
- {
- bool operator()(const cv::Vec3f& a, const cv::Vec3f b) const
- {
- if(a[0] != b[0]) return a[0] < b[0];
- else if(a[1] != b[1]) return a[1] < b[1];
- else return a[2] < b[2];
- }
- };
- struct Vec2fComparator
- {
- bool operator()(const cv::Vec2f& a, const cv::Vec2f b) const
- {
- if(a[0] != b[0]) return a[0] < b[0];
- else return a[1] < b[1];
- }
- };
- }
- PERF_TEST_P(Sz, HoughLines,
- CUDA_TYPICAL_MAT_SIZES)
- {
- declare.time(30.0);
- const cv::Size size = GetParam();
- const float rho = 1.0f;
- const float theta = static_cast<float>(CV_PI / 180.0);
- const int threshold = 300;
- cv::Mat src(size, CV_8UC1, cv::Scalar::all(0));
- cv::line(src, cv::Point(0, 100), cv::Point(src.cols, 100), cv::Scalar::all(255), 1);
- cv::line(src, cv::Point(0, 200), cv::Point(src.cols, 200), cv::Scalar::all(255), 1);
- cv::line(src, cv::Point(0, 400), cv::Point(src.cols, 400), cv::Scalar::all(255), 1);
- cv::line(src, cv::Point(100, 0), cv::Point(100, src.rows), cv::Scalar::all(255), 1);
- cv::line(src, cv::Point(200, 0), cv::Point(200, src.rows), cv::Scalar::all(255), 1);
- cv::line(src, cv::Point(400, 0), cv::Point(400, src.rows), cv::Scalar::all(255), 1);
- if (PERF_RUN_CUDA())
- {
- const cv::cuda::GpuMat d_src(src);
- cv::cuda::GpuMat d_lines;
- cv::Ptr<cv::cuda::HoughLinesDetector> hough = cv::cuda::createHoughLinesDetector(rho, theta, threshold);
- TEST_CYCLE() hough->detect(d_src, d_lines);
- cv::Mat gpu_lines(d_lines.row(0));
- cv::Vec2f* begin = gpu_lines.ptr<cv::Vec2f>(0);
- cv::Vec2f* end = begin + gpu_lines.cols;
- std::sort(begin, end, Vec2fComparator());
- SANITY_CHECK(gpu_lines);
- }
- else
- {
- std::vector<cv::Vec2f> cpu_lines;
- TEST_CYCLE() cv::HoughLines(src, cpu_lines, rho, theta, threshold);
- SANITY_CHECK(cpu_lines);
- }
- }
- //////////////////////////////////////////////////////////////////////
- // HoughLinesP
- DEF_PARAM_TEST_1(Image, std::string);
- PERF_TEST_P(Image, HoughLinesP,
- testing::Values("cv/shared/pic5.png", "stitching/a1.png"))
- {
- declare.time(30.0);
- const std::string fileName = getDataPath(GetParam());
- const float rho = 1.0f;
- const float theta = static_cast<float>(CV_PI / 180.0);
- const int threshold = 100;
- const int minLineLength = 50;
- const int maxLineGap = 5;
- const cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE);
- ASSERT_FALSE(image.empty());
- cv::Mat mask;
- cv::Canny(image, mask, 50, 100);
- if (PERF_RUN_CUDA())
- {
- const cv::cuda::GpuMat d_mask(mask);
- cv::cuda::GpuMat d_lines;
- cv::Ptr<cv::cuda::HoughSegmentDetector> hough = cv::cuda::createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap);
- TEST_CYCLE() hough->detect(d_mask, d_lines);
- cv::Mat gpu_lines(d_lines);
- cv::Vec4i* begin = gpu_lines.ptr<cv::Vec4i>();
- cv::Vec4i* end = begin + gpu_lines.cols;
- std::sort(begin, end, Vec4iComparator());
- SANITY_CHECK(gpu_lines);
- }
- else
- {
- std::vector<cv::Vec4i> cpu_lines;
- TEST_CYCLE() cv::HoughLinesP(mask, cpu_lines, rho, theta, threshold, minLineLength, maxLineGap);
- SANITY_CHECK(cpu_lines);
- }
- }
- //////////////////////////////////////////////////////////////////////
- // HoughCircles
- DEF_PARAM_TEST(Sz_Dp_MinDist, cv::Size, float, float);
- PERF_TEST_P(Sz_Dp_MinDist, HoughCircles,
- Combine(CUDA_TYPICAL_MAT_SIZES,
- Values(1.0f, 2.0f, 4.0f),
- Values(1.0f)))
- {
- declare.time(30.0);
- const cv::Size size = GET_PARAM(0);
- const float dp = GET_PARAM(1);
- const float minDist = GET_PARAM(2);
- const int minRadius = 10;
- const int maxRadius = 30;
- const int cannyThreshold = 100;
- const int votesThreshold = 15;
- cv::Mat src(size, CV_8UC1, cv::Scalar::all(0));
- cv::circle(src, cv::Point(100, 100), 20, cv::Scalar::all(255), -1);
- cv::circle(src, cv::Point(200, 200), 25, cv::Scalar::all(255), -1);
- cv::circle(src, cv::Point(200, 100), 25, cv::Scalar::all(255), -1);
- if (PERF_RUN_CUDA())
- {
- const cv::cuda::GpuMat d_src(src);
- cv::cuda::GpuMat d_circles;
- cv::Ptr<cv::cuda::HoughCirclesDetector> houghCircles = cv::cuda::createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
- TEST_CYCLE() houghCircles->detect(d_src, d_circles);
- cv::Mat gpu_circles(d_circles);
- cv::Vec3f* begin = gpu_circles.ptr<cv::Vec3f>(0);
- cv::Vec3f* end = begin + gpu_circles.cols;
- std::sort(begin, end, Vec3fComparator());
- SANITY_CHECK(gpu_circles);
- }
- else
- {
- std::vector<cv::Vec3f> cpu_circles;
- TEST_CYCLE() cv::HoughCircles(src, cpu_circles, cv::HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
- SANITY_CHECK(cpu_circles);
- }
- }
- //////////////////////////////////////////////////////////////////////
- // GeneralizedHough
- PERF_TEST_P(Sz, GeneralizedHoughBallard, CUDA_TYPICAL_MAT_SIZES)
- {
- declare.time(10);
- const cv::Size imageSize = GetParam();
- const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
- ASSERT_FALSE(templ.empty());
- cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0));
- templ.copyTo(image(cv::Rect(50, 50, templ.cols, templ.rows)));
- cv::Mat edges;
- cv::Canny(image, edges, 50, 100);
- cv::Mat dx, dy;
- cv::Sobel(image, dx, CV_32F, 1, 0);
- cv::Sobel(image, dy, CV_32F, 0, 1);
- if (PERF_RUN_CUDA())
- {
- cv::Ptr<cv::GeneralizedHoughBallard> alg = cv::cuda::createGeneralizedHoughBallard();
- const cv::cuda::GpuMat d_edges(edges);
- const cv::cuda::GpuMat d_dx(dx);
- const cv::cuda::GpuMat d_dy(dy);
- cv::cuda::GpuMat positions;
- alg->setTemplate(cv::cuda::GpuMat(templ));
- TEST_CYCLE() alg->detect(d_edges, d_dx, d_dy, positions);
- CUDA_SANITY_CHECK(positions);
- }
- else
- {
- cv::Ptr<cv::GeneralizedHoughBallard> alg = cv::createGeneralizedHoughBallard();
- cv::Mat positions;
- alg->setTemplate(templ);
- TEST_CYCLE() alg->detect(edges, dx, dy, positions);
- CPU_SANITY_CHECK(positions);
- }
- }
- PERF_TEST_P(Sz, DISABLED_GeneralizedHoughGuil, CUDA_TYPICAL_MAT_SIZES)
- {
- declare.time(10);
- const cv::Size imageSize = GetParam();
- const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
- ASSERT_FALSE(templ.empty());
- cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0));
- templ.copyTo(image(cv::Rect(50, 50, templ.cols, templ.rows)));
- cv::RNG rng(123456789);
- const int objCount = rng.uniform(5, 15);
- for (int i = 0; i < objCount; ++i)
- {
- double scale = rng.uniform(0.7, 1.3);
- bool rotate = 1 == rng.uniform(0, 2);
- cv::Mat obj;
- cv::resize(templ, obj, cv::Size(), scale, scale);
- if (rotate)
- obj = obj.t();
- cv::Point pos;
- pos.x = rng.uniform(0, image.cols - obj.cols);
- pos.y = rng.uniform(0, image.rows - obj.rows);
- cv::Mat roi = image(cv::Rect(pos, obj.size()));
- cv::add(roi, obj, roi);
- }
- cv::Mat edges;
- cv::Canny(image, edges, 50, 100);
- cv::Mat dx, dy;
- cv::Sobel(image, dx, CV_32F, 1, 0);
- cv::Sobel(image, dy, CV_32F, 0, 1);
- if (PERF_RUN_CUDA())
- {
- cv::Ptr<cv::GeneralizedHoughGuil> alg = cv::cuda::createGeneralizedHoughGuil();
- alg->setMaxAngle(90.0);
- alg->setAngleStep(2.0);
- const cv::cuda::GpuMat d_edges(edges);
- const cv::cuda::GpuMat d_dx(dx);
- const cv::cuda::GpuMat d_dy(dy);
- cv::cuda::GpuMat positions;
- alg->setTemplate(cv::cuda::GpuMat(templ));
- TEST_CYCLE() alg->detect(d_edges, d_dx, d_dy, positions);
- }
- else
- {
- cv::Ptr<cv::GeneralizedHoughGuil> alg = cv::createGeneralizedHoughGuil();
- alg->setMaxAngle(90.0);
- alg->setAngleStep(2.0);
- cv::Mat positions;
- alg->setTemplate(templ);
- TEST_CYCLE() alg->detect(edges, dx, dy, positions);
- }
- // The algorithm is not stable yet.
- SANITY_CHECK_NOTHING();
- }
- }} // namespace
|