123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- #ifdef HAVE_CUDA
- #include <cuda_runtime_api.h>
- namespace opencv_test { namespace {
- /////////////////////////////////////////////////////////////////////////////////////////////////
- // FAST
- namespace
- {
- IMPLEMENT_PARAM_CLASS(FAST_Threshold, int)
- IMPLEMENT_PARAM_CLASS(FAST_NonmaxSuppression, bool)
- }
- PARAM_TEST_CASE(FAST, cv::cuda::DeviceInfo, FAST_Threshold, FAST_NonmaxSuppression)
- {
- cv::cuda::DeviceInfo devInfo;
- int threshold;
- bool nonmaxSuppression;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- threshold = GET_PARAM(1);
- nonmaxSuppression = GET_PARAM(2);
- cv::cuda::setDevice(devInfo.deviceID());
- }
- };
- CUDA_TEST_P(FAST, Accuracy)
- {
- cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
- ASSERT_FALSE(image.empty());
- cv::Ptr<cv::cuda::FastFeatureDetector> fast = cv::cuda::FastFeatureDetector::create(threshold, nonmaxSuppression);
- if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
- {
- throw SkipTestException("CUDA device doesn't support global atomics");
- }
- else
- {
- std::vector<cv::KeyPoint> keypoints;
- fast->detect(loadMat(image), keypoints);
- std::vector<cv::KeyPoint> keypoints_gold;
- cv::FAST(image, keypoints_gold, threshold, nonmaxSuppression);
- ASSERT_KEYPOINTS_EQ(keypoints_gold, keypoints);
- }
- }
- class FastAsyncParallelLoopBody : public cv::ParallelLoopBody
- {
- public:
- FastAsyncParallelLoopBody(cv::cuda::HostMem& src, cv::cuda::GpuMat* d_kpts, cv::Ptr<cv::cuda::FastFeatureDetector>* d_fast)
- : src_(src), kpts_(d_kpts), fast_(d_fast) {}
- ~FastAsyncParallelLoopBody() {};
- void operator()(const cv::Range& r) const
- {
- for (int i = r.start; i < r.end; i++) {
- cv::cuda::Stream stream;
- cv::cuda::GpuMat d_src_(src_.rows, src_.cols, CV_8UC1);
- d_src_.upload(src_);
- fast_[i]->detectAsync(d_src_, kpts_[i], noArray(), stream);
- }
- }
- protected:
- cv::cuda::HostMem src_;
- cv::cuda::GpuMat* kpts_;
- cv::Ptr<cv::cuda::FastFeatureDetector>* fast_;
- };
- CUDA_TEST_P(FAST, Async)
- {
- if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
- {
- throw SkipTestException("CUDA device doesn't support global atomics");
- }
- else
- {
- cv::Mat image_ = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
- ASSERT_FALSE(image_.empty());
- cv::cuda::HostMem image(image_);
- cv::cuda::GpuMat d_keypoints[2];
- cv::Ptr<cv::cuda::FastFeatureDetector> d_fast[2];
- d_fast[0] = cv::cuda::FastFeatureDetector::create(threshold, nonmaxSuppression);
- d_fast[1] = cv::cuda::FastFeatureDetector::create(threshold, nonmaxSuppression);
- cv::parallel_for_(cv::Range(0, 2), FastAsyncParallelLoopBody(image, d_keypoints, d_fast));
- cudaDeviceSynchronize();
- std::vector<cv::KeyPoint> keypoints[2];
- d_fast[0]->convert(d_keypoints[0], keypoints[0]);
- d_fast[1]->convert(d_keypoints[1], keypoints[1]);
- std::vector<cv::KeyPoint> keypoints_gold;
- cv::FAST(image, keypoints_gold, threshold, nonmaxSuppression);
- ASSERT_KEYPOINTS_EQ(keypoints_gold, keypoints[0]);
- ASSERT_KEYPOINTS_EQ(keypoints_gold, keypoints[1]);
- }
- }
- INSTANTIATE_TEST_CASE_P(CUDA_Features2D, FAST, testing::Combine(
- ALL_DEVICES,
- testing::Values(FAST_Threshold(25), FAST_Threshold(50)),
- testing::Values(FAST_NonmaxSuppression(false), FAST_NonmaxSuppression(true))));
- /////////////////////////////////////////////////////////////////////////////////////////////////
- // ORB
- namespace
- {
- IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
- IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
- IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
- IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
- IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
- IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
- IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
- IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
- }
- PARAM_TEST_CASE(ORB, cv::cuda::DeviceInfo, ORB_FeaturesCount, ORB_ScaleFactor, ORB_LevelsCount, ORB_EdgeThreshold, ORB_firstLevel, ORB_WTA_K, cv::ORB::ScoreType, ORB_PatchSize, ORB_BlurForDescriptor)
- {
- cv::cuda::DeviceInfo devInfo;
- int nFeatures;
- float scaleFactor;
- int nLevels;
- int edgeThreshold;
- int firstLevel;
- int WTA_K;
- cv::ORB::ScoreType scoreType;
- int patchSize;
- bool blurForDescriptor;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- nFeatures = GET_PARAM(1);
- scaleFactor = GET_PARAM(2);
- nLevels = GET_PARAM(3);
- edgeThreshold = GET_PARAM(4);
- firstLevel = GET_PARAM(5);
- WTA_K = GET_PARAM(6);
- scoreType = GET_PARAM(7);
- patchSize = GET_PARAM(8);
- blurForDescriptor = GET_PARAM(9);
- cv::cuda::setDevice(devInfo.deviceID());
- }
- };
- CUDA_TEST_P(ORB, Accuracy)
- {
- cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
- ASSERT_FALSE(image.empty());
- cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1));
- mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
- cv::Ptr<cv::cuda::ORB> orb =
- cv::cuda::ORB::create(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel,
- WTA_K, scoreType, patchSize, 20, blurForDescriptor);
- if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
- {
- try
- {
- std::vector<cv::KeyPoint> keypoints;
- cv::cuda::GpuMat descriptors;
- orb->detectAndComputeAsync(loadMat(image), loadMat(mask), rawOut(keypoints), descriptors);
- }
- catch (const cv::Exception& e)
- {
- ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
- }
- }
- else
- {
- std::vector<cv::KeyPoint> keypoints;
- cv::cuda::GpuMat descriptors;
- orb->detectAndCompute(loadMat(image), loadMat(mask), keypoints, descriptors);
- cv::Ptr<cv::ORB> orb_gold = cv::ORB::create(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
- std::vector<cv::KeyPoint> keypoints_gold;
- cv::Mat descriptors_gold;
- orb_gold->detectAndCompute(image, mask, keypoints_gold, descriptors_gold);
- cv::BFMatcher matcher(cv::NORM_HAMMING);
- std::vector<cv::DMatch> matches;
- matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
- int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints, matches);
- double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
- EXPECT_GT(matchedRatio, 0.35);
- }
- }
- INSTANTIATE_TEST_CASE_P(CUDA_Features2D, ORB, testing::Combine(
- ALL_DEVICES,
- testing::Values(ORB_FeaturesCount(1000)),
- testing::Values(ORB_ScaleFactor(1.2f)),
- testing::Values(ORB_LevelsCount(4), ORB_LevelsCount(8)),
- testing::Values(ORB_EdgeThreshold(31)),
- testing::Values(ORB_firstLevel(0)),
- testing::Values(ORB_WTA_K(2), ORB_WTA_K(3), ORB_WTA_K(4)),
- testing::Values(cv::ORB::HARRIS_SCORE),
- testing::Values(ORB_PatchSize(31), ORB_PatchSize(29)),
- testing::Values(ORB_BlurForDescriptor(false), ORB_BlurForDescriptor(true))));
- /////////////////////////////////////////////////////////////////////////////////////////////////
- // BruteForceMatcher
- namespace
- {
- IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
- IMPLEMENT_PARAM_CLASS(UseMask, bool)
- }
- PARAM_TEST_CASE(BruteForceMatcher, cv::cuda::DeviceInfo, NormCode, DescriptorSize, UseMask)
- {
- cv::cuda::DeviceInfo devInfo;
- int normCode;
- int dim;
- bool useMask;
- int queryDescCount;
- int countFactor;
- cv::Mat query, train;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- normCode = GET_PARAM(1);
- dim = GET_PARAM(2);
- useMask = GET_PARAM(3);
- cv::cuda::setDevice(devInfo.deviceID());
- queryDescCount = 300; // must be even number because we split train data in some cases in two
- countFactor = 4; // do not change it
- cv::RNG& rng = cvtest::TS::ptr()->get_rng();
- cv::Mat queryBuf, trainBuf;
- // Generate query descriptors randomly.
- // Descriptor vector elements are integer values.
- queryBuf.create(queryDescCount, dim, CV_32SC1);
- rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3));
- queryBuf.convertTo(queryBuf, CV_32FC1);
- // Generate train descriptors as follows:
- // copy each query descriptor to train set countFactor times
- // and perturb some one element of the copied descriptors in
- // in ascending order. General boundaries of the perturbation
- // are (0.f, 1.f).
- trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1);
- float step = 1.f / countFactor;
- for (int qIdx = 0; qIdx < queryDescCount; qIdx++)
- {
- cv::Mat queryDescriptor = queryBuf.row(qIdx);
- for (int c = 0; c < countFactor; c++)
- {
- int tIdx = qIdx * countFactor + c;
- cv::Mat trainDescriptor = trainBuf.row(tIdx);
- queryDescriptor.copyTo(trainDescriptor);
- int elem = rng(dim);
- float diff = rng.uniform(step * c, step * (c + 1));
- trainDescriptor.at<float>(0, elem) += diff;
- }
- }
- queryBuf.convertTo(query, CV_32F);
- trainBuf.convertTo(train, CV_32F);
- }
- };
- CUDA_TEST_P(BruteForceMatcher, Match_Single)
- {
- cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
- cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
- cv::cuda::GpuMat mask;
- if (useMask)
- {
- mask.create(query.rows, train.rows, CV_8UC1);
- mask.setTo(cv::Scalar::all(1));
- }
- std::vector<cv::DMatch> matches;
- matcher->match(loadMat(query), loadMat(train), matches, mask);
- ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
- int badCount = 0;
- for (size_t i = 0; i < matches.size(); i++)
- {
- cv::DMatch match = matches[i];
- if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
- badCount++;
- }
- ASSERT_EQ(0, badCount);
- }
- CUDA_TEST_P(BruteForceMatcher, Match_Collection)
- {
- cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
- cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
- cv::cuda::GpuMat d_train(train);
- // make add() twice to test such case
- matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
- matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
- // prepare masks (make first nearest match illegal)
- std::vector<cv::cuda::GpuMat> masks(2);
- for (int mi = 0; mi < 2; mi++)
- {
- masks[mi] = cv::cuda::GpuMat(query.rows, train.rows/2, CV_8UC1, cv::Scalar::all(1));
- for (int di = 0; di < queryDescCount/2; di++)
- masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
- }
- std::vector<cv::DMatch> matches;
- if (useMask)
- matcher->match(cv::cuda::GpuMat(query), matches, masks);
- else
- matcher->match(cv::cuda::GpuMat(query), matches);
- ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
- int badCount = 0;
- int shift = useMask ? 1 : 0;
- for (size_t i = 0; i < matches.size(); i++)
- {
- cv::DMatch match = matches[i];
- if ((int)i < queryDescCount / 2)
- {
- bool validQueryIdx = (match.queryIdx == (int)i);
- bool validTrainIdx = (match.trainIdx == (int)i * countFactor + shift);
- bool validImgIdx = (match.imgIdx == 0);
- if (!validQueryIdx || !validTrainIdx || !validImgIdx)
- badCount++;
- }
- else
- {
- bool validQueryIdx = (match.queryIdx == (int)i);
- bool validTrainIdx = (match.trainIdx == ((int)i - queryDescCount / 2) * countFactor + shift);
- bool validImgIdx = (match.imgIdx == 1);
- if (!validQueryIdx || !validTrainIdx || !validImgIdx)
- badCount++;
- }
- }
- ASSERT_EQ(0, badCount);
- }
- CUDA_TEST_P(BruteForceMatcher, KnnMatch_2_Single)
- {
- cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
- cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
- const int knn = 2;
- cv::cuda::GpuMat mask;
- if (useMask)
- {
- mask.create(query.rows, train.rows, CV_8UC1);
- mask.setTo(cv::Scalar::all(1));
- }
- std::vector< std::vector<cv::DMatch> > matches;
- matcher->knnMatch(loadMat(query), loadMat(train), matches, knn, mask);
- ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
- int badCount = 0;
- for (size_t i = 0; i < matches.size(); i++)
- {
- if ((int)matches[i].size() != knn)
- badCount++;
- else
- {
- int localBadCount = 0;
- for (int k = 0; k < knn; k++)
- {
- cv::DMatch match = matches[i][k];
- if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
- localBadCount++;
- }
- badCount += localBadCount > 0 ? 1 : 0;
- }
- }
- ASSERT_EQ(0, badCount);
- }
- CUDA_TEST_P(BruteForceMatcher, KnnMatch_3_Single)
- {
- cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
- cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
- const int knn = 3;
- cv::cuda::GpuMat mask;
- if (useMask)
- {
- mask.create(query.rows, train.rows, CV_8UC1);
- mask.setTo(cv::Scalar::all(1));
- }
- std::vector< std::vector<cv::DMatch> > matches;
- matcher->knnMatch(loadMat(query), loadMat(train), matches, knn, mask);
- ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
- int badCount = 0;
- for (size_t i = 0; i < matches.size(); i++)
- {
- if ((int)matches[i].size() != knn)
- badCount++;
- else
- {
- int localBadCount = 0;
- for (int k = 0; k < knn; k++)
- {
- cv::DMatch match = matches[i][k];
- if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
- localBadCount++;
- }
- badCount += localBadCount > 0 ? 1 : 0;
- }
- }
- ASSERT_EQ(0, badCount);
- }
- CUDA_TEST_P(BruteForceMatcher, KnnMatch_2_Collection)
- {
- cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
- cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
- const int knn = 2;
- cv::cuda::GpuMat d_train(train);
- // make add() twice to test such case
- matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
- matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
- // prepare masks (make first nearest match illegal)
- std::vector<cv::cuda::GpuMat> masks(2);
- for (int mi = 0; mi < 2; mi++ )
- {
- masks[mi] = cv::cuda::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1));
- for (int di = 0; di < queryDescCount / 2; di++)
- masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
- }
- std::vector< std::vector<cv::DMatch> > matches;
- if (useMask)
- matcher->knnMatch(cv::cuda::GpuMat(query), matches, knn, masks);
- else
- matcher->knnMatch(cv::cuda::GpuMat(query), matches, knn);
- ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
- int badCount = 0;
- int shift = useMask ? 1 : 0;
- for (size_t i = 0; i < matches.size(); i++)
- {
- if ((int)matches[i].size() != knn)
- badCount++;
- else
- {
- int localBadCount = 0;
- for (int k = 0; k < knn; k++)
- {
- cv::DMatch match = matches[i][k];
- {
- if ((int)i < queryDescCount / 2)
- {
- if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
- localBadCount++;
- }
- else
- {
- if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
- localBadCount++;
- }
- }
- }
- badCount += localBadCount > 0 ? 1 : 0;
- }
- }
- ASSERT_EQ(0, badCount);
- }
- CUDA_TEST_P(BruteForceMatcher, KnnMatch_3_Collection)
- {
- cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
- cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
- const int knn = 3;
- cv::cuda::GpuMat d_train(train);
- // make add() twice to test such case
- matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
- matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
- // prepare masks (make first nearest match illegal)
- std::vector<cv::cuda::GpuMat> masks(2);
- for (int mi = 0; mi < 2; mi++ )
- {
- masks[mi] = cv::cuda::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1));
- for (int di = 0; di < queryDescCount / 2; di++)
- masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
- }
- std::vector< std::vector<cv::DMatch> > matches;
- if (useMask)
- matcher->knnMatch(cv::cuda::GpuMat(query), matches, knn, masks);
- else
- matcher->knnMatch(cv::cuda::GpuMat(query), matches, knn);
- ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
- int badCount = 0;
- int shift = useMask ? 1 : 0;
- for (size_t i = 0; i < matches.size(); i++)
- {
- if ((int)matches[i].size() != knn)
- badCount++;
- else
- {
- int localBadCount = 0;
- for (int k = 0; k < knn; k++)
- {
- cv::DMatch match = matches[i][k];
- {
- if ((int)i < queryDescCount / 2)
- {
- if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
- localBadCount++;
- }
- else
- {
- if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
- localBadCount++;
- }
- }
- }
- badCount += localBadCount > 0 ? 1 : 0;
- }
- }
- ASSERT_EQ(0, badCount);
- }
- CUDA_TEST_P(BruteForceMatcher, RadiusMatch_Single)
- {
- cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
- cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
- const float radius = 1.f / countFactor;
- if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
- {
- try
- {
- std::vector< std::vector<cv::DMatch> > matches;
- matcher->radiusMatch(loadMat(query), loadMat(train), matches, radius);
- }
- catch (const cv::Exception& e)
- {
- ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
- }
- }
- else
- {
- cv::cuda::GpuMat mask;
- if (useMask)
- {
- mask.create(query.rows, train.rows, CV_8UC1);
- mask.setTo(cv::Scalar::all(1));
- }
- std::vector< std::vector<cv::DMatch> > matches;
- matcher->radiusMatch(loadMat(query), loadMat(train), matches, radius, mask);
- ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
- int badCount = 0;
- for (size_t i = 0; i < matches.size(); i++)
- {
- if ((int)matches[i].size() != 1)
- badCount++;
- else
- {
- cv::DMatch match = matches[i][0];
- if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0))
- badCount++;
- }
- }
- ASSERT_EQ(0, badCount);
- }
- }
- CUDA_TEST_P(BruteForceMatcher, RadiusMatch_Collection)
- {
- cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
- cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
- const int n = 3;
- const float radius = 1.f / countFactor * n;
- cv::cuda::GpuMat d_train(train);
- // make add() twice to test such case
- matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
- matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
- // prepare masks (make first nearest match illegal)
- std::vector<cv::cuda::GpuMat> masks(2);
- for (int mi = 0; mi < 2; mi++)
- {
- masks[mi] = cv::cuda::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1));
- for (int di = 0; di < queryDescCount / 2; di++)
- masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
- }
- if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
- {
- try
- {
- std::vector< std::vector<cv::DMatch> > matches;
- matcher->radiusMatch(cv::cuda::GpuMat(query), matches, radius, masks);
- }
- catch (const cv::Exception& e)
- {
- ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
- }
- }
- else
- {
- std::vector< std::vector<cv::DMatch> > matches;
- if (useMask)
- matcher->radiusMatch(cv::cuda::GpuMat(query), matches, radius, masks);
- else
- matcher->radiusMatch(cv::cuda::GpuMat(query), matches, radius);
- ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
- int badCount = 0;
- int shift = useMask ? 1 : 0;
- int needMatchCount = useMask ? n-1 : n;
- for (size_t i = 0; i < matches.size(); i++)
- {
- if ((int)matches[i].size() != needMatchCount)
- badCount++;
- else
- {
- int localBadCount = 0;
- for (int k = 0; k < needMatchCount; k++)
- {
- cv::DMatch match = matches[i][k];
- {
- if ((int)i < queryDescCount / 2)
- {
- if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
- localBadCount++;
- }
- else
- {
- if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
- localBadCount++;
- }
- }
- }
- badCount += localBadCount > 0 ? 1 : 0;
- }
- }
- ASSERT_EQ(0, badCount);
- }
- }
- INSTANTIATE_TEST_CASE_P(CUDA_Features2D, BruteForceMatcher, testing::Combine(
- ALL_DEVICES,
- testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2)),
- testing::Values(DescriptorSize(57), DescriptorSize(64), DescriptorSize(83), DescriptorSize(128), DescriptorSize(179), DescriptorSize(256), DescriptorSize(304)),
- testing::Values(UseMask(false), UseMask(true))));
- }} // namespace
- #endif // HAVE_CUDA
|