123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "perf_precomp.hpp"
- namespace opencv_test { namespace {
- //////////////////////////////////////////////////////////////////////
- // FAST
- DEF_PARAM_TEST(Image_Threshold_NonMaxSuppression, string, int, bool);
- PERF_TEST_P(Image_Threshold_NonMaxSuppression, FAST,
- Combine(Values<string>("gpu/perf/aloe.png"),
- Values(20),
- Bool()))
- {
- const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
- ASSERT_FALSE(img.empty());
- const int threshold = GET_PARAM(1);
- const bool nonMaxSuppersion = GET_PARAM(2);
- if (PERF_RUN_CUDA())
- {
- cv::Ptr<cv::cuda::FastFeatureDetector> d_fast =
- cv::cuda::FastFeatureDetector::create(threshold, nonMaxSuppersion,
- cv::FastFeatureDetector::TYPE_9_16,
- 0.5 * img.size().area());
- const cv::cuda::GpuMat d_img(img);
- cv::cuda::GpuMat d_keypoints;
- TEST_CYCLE() d_fast->detectAsync(d_img, d_keypoints);
- std::vector<cv::KeyPoint> gpu_keypoints;
- d_fast->convert(d_keypoints, gpu_keypoints);
- sortKeyPoints(gpu_keypoints);
- SANITY_CHECK_KEYPOINTS(gpu_keypoints);
- }
- else
- {
- std::vector<cv::KeyPoint> cpu_keypoints;
- TEST_CYCLE() cv::FAST(img, cpu_keypoints, threshold, nonMaxSuppersion);
- SANITY_CHECK_KEYPOINTS(cpu_keypoints);
- }
- }
- //////////////////////////////////////////////////////////////////////
- // ORB
- DEF_PARAM_TEST(Image_NFeatures, string, int);
- PERF_TEST_P(Image_NFeatures, ORB,
- Combine(Values<string>("gpu/perf/aloe.png"),
- Values(4000)))
- {
- declare.time(300.0);
- const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
- ASSERT_FALSE(img.empty());
- const int nFeatures = GET_PARAM(1);
- if (PERF_RUN_CUDA())
- {
- cv::Ptr<cv::cuda::ORB> d_orb = cv::cuda::ORB::create(nFeatures);
- const cv::cuda::GpuMat d_img(img);
- cv::cuda::GpuMat d_keypoints, d_descriptors;
- TEST_CYCLE() d_orb->detectAndComputeAsync(d_img, cv::noArray(), d_keypoints, d_descriptors);
- std::vector<cv::KeyPoint> gpu_keypoints;
- d_orb->convert(d_keypoints, gpu_keypoints);
- cv::Mat gpu_descriptors(d_descriptors);
- gpu_keypoints.resize(10);
- gpu_descriptors = gpu_descriptors.rowRange(0, 10);
- sortKeyPoints(gpu_keypoints, gpu_descriptors);
- SANITY_CHECK_KEYPOINTS(gpu_keypoints, 1e-4);
- SANITY_CHECK(gpu_descriptors);
- }
- else
- {
- cv::Ptr<cv::ORB> orb = cv::ORB::create(nFeatures);
- std::vector<cv::KeyPoint> cpu_keypoints;
- cv::Mat cpu_descriptors;
- TEST_CYCLE() orb->detectAndCompute(img, cv::noArray(), cpu_keypoints, cpu_descriptors);
- SANITY_CHECK_KEYPOINTS(cpu_keypoints);
- SANITY_CHECK(cpu_descriptors);
- }
- }
- //////////////////////////////////////////////////////////////////////
- // BFMatch
- DEF_PARAM_TEST(DescSize_Norm, int, NormType);
- PERF_TEST_P(DescSize_Norm, BFMatch,
- Combine(Values(64, 128, 256),
- Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
- {
- declare.time(20.0);
- const int desc_size = GET_PARAM(0);
- const int normType = GET_PARAM(1);
- const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
- cv::Mat query(3000, desc_size, type);
- declare.in(query, WARMUP_RNG);
- cv::Mat train(3000, desc_size, type);
- declare.in(train, WARMUP_RNG);
- if (PERF_RUN_CUDA())
- {
- cv::Ptr<cv::cuda::DescriptorMatcher> d_matcher = cv::cuda::DescriptorMatcher::createBFMatcher(normType);
- const cv::cuda::GpuMat d_query(query);
- const cv::cuda::GpuMat d_train(train);
- cv::cuda::GpuMat d_matches;
- TEST_CYCLE() d_matcher->matchAsync(d_query, d_train, d_matches);
- std::vector<cv::DMatch> gpu_matches;
- d_matcher->matchConvert(d_matches, gpu_matches);
- SANITY_CHECK_MATCHES(gpu_matches);
- }
- else
- {
- cv::BFMatcher matcher(normType);
- std::vector<cv::DMatch> cpu_matches;
- TEST_CYCLE() matcher.match(query, train, cpu_matches);
- SANITY_CHECK_MATCHES(cpu_matches);
- }
- }
- //////////////////////////////////////////////////////////////////////
- // BFKnnMatch
- static void toOneRowMatches(const std::vector< std::vector<cv::DMatch> >& src, std::vector<cv::DMatch>& dst)
- {
- dst.clear();
- for (size_t i = 0; i < src.size(); ++i)
- for (size_t j = 0; j < src[i].size(); ++j)
- dst.push_back(src[i][j]);
- }
- DEF_PARAM_TEST(DescSize_K_Norm, int, int, NormType);
- PERF_TEST_P(DescSize_K_Norm, BFKnnMatch,
- Combine(Values(64, 128, 256),
- Values(2, 3),
- Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2))))
- {
- declare.time(30.0);
- const int desc_size = GET_PARAM(0);
- const int k = GET_PARAM(1);
- const int normType = GET_PARAM(2);
- const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
- cv::Mat query(3000, desc_size, type);
- declare.in(query, WARMUP_RNG);
- cv::Mat train(3000, desc_size, type);
- declare.in(train, WARMUP_RNG);
- if (PERF_RUN_CUDA())
- {
- cv::Ptr<cv::cuda::DescriptorMatcher> d_matcher = cv::cuda::DescriptorMatcher::createBFMatcher(normType);
- const cv::cuda::GpuMat d_query(query);
- const cv::cuda::GpuMat d_train(train);
- cv::cuda::GpuMat d_matches;
- TEST_CYCLE() d_matcher->knnMatchAsync(d_query, d_train, d_matches, k);
- std::vector< std::vector<cv::DMatch> > matchesTbl;
- d_matcher->knnMatchConvert(d_matches, matchesTbl);
- std::vector<cv::DMatch> gpu_matches;
- toOneRowMatches(matchesTbl, gpu_matches);
- SANITY_CHECK_MATCHES(gpu_matches);
- }
- else
- {
- cv::BFMatcher matcher(normType);
- std::vector< std::vector<cv::DMatch> > matchesTbl;
- TEST_CYCLE() matcher.knnMatch(query, train, matchesTbl, k);
- std::vector<cv::DMatch> cpu_matches;
- toOneRowMatches(matchesTbl, cpu_matches);
- SANITY_CHECK_MATCHES(cpu_matches);
- }
- }
- //////////////////////////////////////////////////////////////////////
- // BFRadiusMatch
- PERF_TEST_P(DescSize_Norm, BFRadiusMatch,
- Combine(Values(64, 128, 256),
- Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2))))
- {
- declare.time(30.0);
- const int desc_size = GET_PARAM(0);
- const int normType = GET_PARAM(1);
- const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
- const float maxDistance = 10000;
- cv::Mat query(3000, desc_size, type);
- declare.in(query, WARMUP_RNG);
- cv::Mat train(3000, desc_size, type);
- declare.in(train, WARMUP_RNG);
- if (PERF_RUN_CUDA())
- {
- cv::Ptr<cv::cuda::DescriptorMatcher> d_matcher = cv::cuda::DescriptorMatcher::createBFMatcher(normType);
- const cv::cuda::GpuMat d_query(query);
- const cv::cuda::GpuMat d_train(train);
- cv::cuda::GpuMat d_matches;
- TEST_CYCLE() d_matcher->radiusMatchAsync(d_query, d_train, d_matches, maxDistance);
- std::vector< std::vector<cv::DMatch> > matchesTbl;
- d_matcher->radiusMatchConvert(d_matches, matchesTbl);
- std::vector<cv::DMatch> gpu_matches;
- toOneRowMatches(matchesTbl, gpu_matches);
- SANITY_CHECK_MATCHES(gpu_matches);
- }
- else
- {
- cv::BFMatcher matcher(normType);
- std::vector< std::vector<cv::DMatch> > matchesTbl;
- TEST_CYCLE() matcher.radiusMatch(query, train, matchesTbl, maxDistance);
- std::vector<cv::DMatch> cpu_matches;
- toOneRowMatches(matchesTbl, cpu_matches);
- SANITY_CHECK_MATCHES(cpu_matches);
- }
- }
- }} // namespace
|