1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- #!/usr/bin/env python
- import os
- import cv2 as cv
- import numpy as np
- from tests_common import NewOpenCVTests, unittest
- class cudafeatures2d_test(NewOpenCVTests):
- def setUp(self):
- super(cudafeatures2d_test, self).setUp()
- if not cv.cuda.getCudaEnabledDeviceCount():
- self.skipTest("No CUDA-capable device is detected")
- def test_cudafeatures2d(self):
- npMat1 = self.get_sample("samples/data/right01.jpg")
- npMat2 = self.get_sample("samples/data/right02.jpg")
- cuMat1 = cv.cuda_GpuMat()
- cuMat2 = cv.cuda_GpuMat()
- cuMat1.upload(npMat1)
- cuMat2.upload(npMat2)
- cuMat1 = cv.cuda.cvtColor(cuMat1, cv.COLOR_RGB2GRAY)
- cuMat2 = cv.cuda.cvtColor(cuMat2, cv.COLOR_RGB2GRAY)
- fast = cv.cuda_FastFeatureDetector.create()
- _kps = fast.detectAsync(cuMat1)
- orb = cv.cuda_ORB.create()
- _kps1, descs1 = orb.detectAndComputeAsync(cuMat1, None)
- _kps2, descs2 = orb.detectAndComputeAsync(cuMat2, None)
- self.assertTrue(len(orb.convert(_kps1)) == _kps1.size()[0])
- self.assertTrue(len(orb.convert(_kps2)) == _kps2.size()[0])
- bf = cv.cuda_DescriptorMatcher.createBFMatcher(cv.NORM_HAMMING)
- matches = bf.match(descs1, descs2)
- self.assertGreater(len(matches), 0)
- matches = bf.knnMatch(descs1, descs2, 2)
- self.assertGreater(len(matches), 0)
- matches = bf.radiusMatch(descs1, descs2, 0.1)
- self.assertGreater(len(matches), 0)
- self.assertTrue(True) #It is sufficient that no exceptions have been there
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|