123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- #ifdef HAVE_CUDA
- namespace opencv_test { namespace {
- //////////////////////////////////////////////////////////////////////////////
- // GEMM
- #ifdef HAVE_CUBLAS
- CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T);
- #define ALL_GEMM_FLAGS testing::Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T))
- PARAM_TEST_CASE(GEMM, cv::cuda::DeviceInfo, cv::Size, MatType, GemmFlags, UseRoi)
- {
- cv::cuda::DeviceInfo devInfo;
- cv::Size size;
- int type;
- int flags;
- bool useRoi;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- size = GET_PARAM(1);
- type = GET_PARAM(2);
- flags = GET_PARAM(3);
- useRoi = GET_PARAM(4);
- cv::cuda::setDevice(devInfo.deviceID());
- }
- };
- CUDA_TEST_P(GEMM, Accuracy)
- {
- cv::Mat src1 = randomMat(size, type, -10.0, 10.0);
- cv::Mat src2 = randomMat(size, type, -10.0, 10.0);
- cv::Mat src3 = randomMat(size, type, -10.0, 10.0);
- double alpha = randomDouble(-10.0, 10.0);
- double beta = randomDouble(-10.0, 10.0);
- if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
- {
- try
- {
- cv::cuda::GpuMat dst;
- cv::cuda::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
- }
- catch (const cv::Exception& e)
- {
- ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
- }
- }
- else if (type == CV_64FC2 && flags != 0)
- {
- try
- {
- cv::cuda::GpuMat dst;
- cv::cuda::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
- }
- catch (const cv::Exception& e)
- {
- ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
- }
- }
- else
- {
- cv::cuda::GpuMat dst = createMat(size, type, useRoi);
- cv::cuda::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dst, flags);
- cv::Mat dst_gold;
- cv::gemm(src1, src2, alpha, src3, beta, dst_gold, flags);
- EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) == CV_32F ? 1e-1 : 1e-10);
- }
- }
- INSTANTIATE_TEST_CASE_P(CUDA_Arithm, GEMM, testing::Combine(
- ALL_DEVICES,
- DIFFERENT_SIZES,
- testing::Values(MatType(CV_32FC1), MatType(CV_32FC2), MatType(CV_64FC1), MatType(CV_64FC2)),
- ALL_GEMM_FLAGS,
- WHOLE_SUBMAT));
- ////////////////////////////////////////////////////////////////////////////
- // MulSpectrums
- CV_FLAGS(DftFlags, 0, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT)
- PARAM_TEST_CASE(MulSpectrums, cv::cuda::DeviceInfo, cv::Size, DftFlags)
- {
- cv::cuda::DeviceInfo devInfo;
- cv::Size size;
- int flag;
- cv::Mat a, b;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- size = GET_PARAM(1);
- flag = GET_PARAM(2);
- cv::cuda::setDevice(devInfo.deviceID());
- a = randomMat(size, CV_32FC2);
- b = randomMat(size, CV_32FC2);
- }
- };
- CUDA_TEST_P(MulSpectrums, Simple)
- {
- cv::cuda::GpuMat c;
- cv::cuda::mulSpectrums(loadMat(a), loadMat(b), c, flag, false);
- cv::Mat c_gold;
- cv::mulSpectrums(a, b, c_gold, flag, false);
- EXPECT_MAT_NEAR(c_gold, c, 1e-2);
- }
- CUDA_TEST_P(MulSpectrums, Scaled)
- {
- float scale = 1.f / size.area();
- cv::cuda::GpuMat c;
- cv::cuda::mulAndScaleSpectrums(loadMat(a), loadMat(b), c, flag, scale, false);
- cv::Mat c_gold;
- cv::mulSpectrums(a, b, c_gold, flag, false);
- c_gold.convertTo(c_gold, c_gold.type(), scale);
- EXPECT_MAT_NEAR(c_gold, c, 1e-2);
- }
- INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MulSpectrums, testing::Combine(
- ALL_DEVICES,
- DIFFERENT_SIZES,
- testing::Values(DftFlags(0), DftFlags(cv::DFT_ROWS))));
- ////////////////////////////////////////////////////////////////////////////
- // Dft
- struct Dft : testing::TestWithParam<cv::cuda::DeviceInfo>
- {
- cv::cuda::DeviceInfo devInfo;
- virtual void SetUp()
- {
- devInfo = GetParam();
- cv::cuda::setDevice(devInfo.deviceID());
- }
- };
- namespace
- {
- void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
- {
- SCOPED_TRACE(hint);
- cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0);
- cv::Mat b_gold;
- cv::dft(a, b_gold, flags);
- cv::cuda::GpuMat d_b;
- cv::cuda::GpuMat d_b_data;
- if (inplace)
- {
- d_b_data.create(1, a.size().area(), CV_32FC2);
- d_b = cv::cuda::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
- }
- cv::cuda::dft(loadMat(a), d_b, cv::Size(cols, rows), flags);
- EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
- ASSERT_EQ(CV_32F, d_b.depth());
- ASSERT_EQ(2, d_b.channels());
- EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
- }
- }
- CUDA_TEST_P(Dft, C2C)
- {
- int cols = randomInt(2, 100);
- int rows = randomInt(2, 100);
- for (int i = 0; i < 2; ++i)
- {
- bool inplace = i != 0;
- testC2C("no flags", cols, rows, 0, inplace);
- testC2C("no flags 0 1", cols, rows + 1, 0, inplace);
- testC2C("no flags 1 0", cols, rows + 1, 0, inplace);
- testC2C("no flags 1 1", cols + 1, rows, 0, inplace);
- testC2C("DFT_INVERSE", cols, rows, cv::DFT_INVERSE, inplace);
- testC2C("DFT_ROWS", cols, rows, cv::DFT_ROWS, inplace);
- testC2C("single col", 1, rows, 0, inplace);
- testC2C("single row", cols, 1, 0, inplace);
- testC2C("single col inversed", 1, rows, cv::DFT_INVERSE, inplace);
- testC2C("single row inversed", cols, 1, cv::DFT_INVERSE, inplace);
- testC2C("single row DFT_ROWS", cols, 1, cv::DFT_ROWS, inplace);
- testC2C("size 1 2", 1, 2, 0, inplace);
- testC2C("size 2 1", 2, 1, 0, inplace);
- }
- }
- CUDA_TEST_P(Dft, Algorithm)
- {
- int cols = randomInt(2, 100);
- int rows = randomInt(2, 100);
- int flags = 0 | DFT_COMPLEX_INPUT;
- cv::Ptr<cv::cuda::DFT> dft = cv::cuda::createDFT(cv::Size(cols, rows), flags);
- for (int i = 0; i < 5; ++i)
- {
- SCOPED_TRACE("dft algorithm");
- cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0);
- cv::cuda::GpuMat d_b;
- cv::cuda::GpuMat d_b_data;
- dft->compute(loadMat(a), d_b);
- cv::Mat b_gold;
- cv::dft(a, b_gold, flags);
- ASSERT_EQ(CV_32F, d_b.depth());
- ASSERT_EQ(2, d_b.channels());
- EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
- }
- }
- namespace
- {
- void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
- {
- SCOPED_TRACE(hint);
- cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0);
- cv::cuda::GpuMat d_b, d_c;
- cv::cuda::GpuMat d_b_data, d_c_data;
- if (inplace)
- {
- if (a.cols == 1)
- {
- d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
- d_b = cv::cuda::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
- }
- else
- {
- d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
- d_b = cv::cuda::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
- }
- d_c_data.create(1, a.size().area(), CV_32F);
- d_c = cv::cuda::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
- }
- cv::cuda::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
- cv::cuda::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
- EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
- EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
- ASSERT_EQ(CV_32F, d_c.depth());
- ASSERT_EQ(1, d_c.channels());
- cv::Mat c(d_c);
- EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
- }
- }
- CUDA_TEST_P(Dft, R2CThenC2R)
- {
- int cols = randomInt(2, 100);
- int rows = randomInt(2, 100);
- testR2CThenC2R("sanity", cols, rows, false);
- testR2CThenC2R("sanity 0 1", cols, rows + 1, false);
- testR2CThenC2R("sanity 1 0", cols + 1, rows, false);
- testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, false);
- testR2CThenC2R("single col", 1, rows, false);
- testR2CThenC2R("single col 1", 1, rows + 1, false);
- testR2CThenC2R("single row", cols, 1, false);
- testR2CThenC2R("single row 1", cols + 1, 1, false);
- testR2CThenC2R("sanity", cols, rows, true);
- testR2CThenC2R("sanity 0 1", cols, rows + 1, true);
- testR2CThenC2R("sanity 1 0", cols + 1, rows, true);
- testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true);
- testR2CThenC2R("single row", cols, 1, true);
- testR2CThenC2R("single row 1", cols + 1, 1, true);
- }
- INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Dft, ALL_DEVICES);
- ////////////////////////////////////////////////////////
- // Convolve
- namespace
- {
- void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
- {
- // reallocate the output array if needed
- C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
- cv::Size dftSize;
- // compute the size of DFT transform
- dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
- dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
- // allocate temporary buffers and initialize them with 0s
- cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
- cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
- // copy A and B to the top-left corners of tempA and tempB, respectively
- cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
- A.copyTo(roiA);
- cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
- B.copyTo(roiB);
- // now transform the padded A & B in-place;
- // use "nonzeroRows" hint for faster processing
- cv::dft(tempA, tempA, 0, A.rows);
- cv::dft(tempB, tempB, 0, B.rows);
- // multiply the spectrums;
- // the function handles packed spectrum representations well
- cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
- // transform the product back from the frequency domain.
- // Even though all the result rows will be non-zero,
- // you need only the first C.rows of them, and thus you
- // pass nonzeroRows == C.rows
- cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
- // now copy the result back to C.
- tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
- }
- IMPLEMENT_PARAM_CLASS(KSize, int)
- IMPLEMENT_PARAM_CLASS(Ccorr, bool)
- }
- PARAM_TEST_CASE(Convolve, cv::cuda::DeviceInfo, cv::Size, KSize, Ccorr)
- {
- cv::cuda::DeviceInfo devInfo;
- cv::Size size;
- int ksize;
- bool ccorr;
- virtual void SetUp()
- {
- devInfo = GET_PARAM(0);
- size = GET_PARAM(1);
- ksize = GET_PARAM(2);
- ccorr = GET_PARAM(3);
- cv::cuda::setDevice(devInfo.deviceID());
- }
- };
- CUDA_TEST_P(Convolve, Accuracy)
- {
- cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0);
- cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0);
- cv::Ptr<cv::cuda::Convolution> conv = cv::cuda::createConvolution();
- cv::cuda::GpuMat dst;
- conv->convolve(loadMat(src), loadMat(kernel), dst, ccorr);
- cv::Mat dst_gold;
- convolveDFT(src, kernel, dst_gold, ccorr);
- EXPECT_MAT_NEAR(dst, dst_gold, 1e-1);
- }
- INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Convolve, testing::Combine(
- ALL_DEVICES,
- DIFFERENT_SIZES,
- testing::Values(KSize(3), KSize(7), KSize(11), KSize(17), KSize(19), KSize(23), KSize(45)),
- testing::Values(Ccorr(false), Ccorr(true))));
- #endif // HAVE_CUBLAS
- }} // namespace
- #endif // HAVE_CUDA
|