3d_triplet_testIMG.prototxt 1.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586
  1. name: "3d_triplet"
  2. input: "data"
  3. input_dim: 1
  4. input_dim: 1
  5. input_dim: 64
  6. input_dim: 64
  7. layer {
  8. name: "conv1"
  9. type: "Convolution"
  10. bottom: "data"
  11. top: "conv1"
  12. convolution_param {
  13. num_output: 16
  14. kernel_size: 8
  15. stride: 1
  16. }
  17. }
  18. layer {
  19. name: "pool1"
  20. type: "Pooling"
  21. bottom: "conv1"
  22. top: "pool1"
  23. pooling_param {
  24. pool: MAX
  25. kernel_size: 2
  26. stride: 2
  27. }
  28. }
  29. layer {
  30. name: "relu1"
  31. type: "ReLU"
  32. bottom: "pool1"
  33. top: "pool1"
  34. }
  35. layer {
  36. name: "conv2"
  37. type: "Convolution"
  38. bottom: "pool1"
  39. top: "conv2"
  40. convolution_param {
  41. num_output: 7
  42. kernel_size: 5
  43. stride: 1
  44. }
  45. }
  46. layer {
  47. name: "pool2"
  48. type: "Pooling"
  49. bottom: "conv2"
  50. top: "pool2"
  51. pooling_param {
  52. pool: MAX
  53. kernel_size: 2
  54. stride: 2
  55. }
  56. }
  57. layer {
  58. name: "relu2"
  59. type: "ReLU"
  60. bottom: "pool2"
  61. top: "pool2"
  62. }
  63. layer {
  64. name: "ip1"
  65. type: "InnerProduct"
  66. bottom: "pool2"
  67. top: "ip1"
  68. inner_product_param {
  69. num_output: 256
  70. }
  71. }
  72. layer {
  73. name: "relu3"
  74. type: "ReLU"
  75. bottom: "ip1"
  76. top: "ip1"
  77. }
  78. layer {
  79. name: "feat"
  80. type: "InnerProduct"
  81. bottom: "ip1"
  82. top: "feat"
  83. inner_product_param {
  84. num_output: 3
  85. }
  86. }