12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 |
- import numpy as np
- import cv2 as cv
- import argparse
- parser = argparse.ArgumentParser(description='This sample demonstrates the meanshift algorithm. \
- The example file can be downloaded from: \
- https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4')
- parser.add_argument('image', type=str, help='path to image file')
- args = parser.parse_args()
- cap = cv.VideoCapture(args.image)
- # take first frame of the video
- ret,frame = cap.read()
- # setup initial location of window
- x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values
- track_window = (x, y, w, h)
- # set up the ROI for tracking
- roi = frame[y:y+h, x:x+w]
- hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
- mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
- roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
- cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
- # Setup the termination criteria, either 10 iteration or move by at least 1 pt
- term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
- while(1):
- ret, frame = cap.read()
- if ret == True:
- hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
- dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
- # apply meanshift to get the new location
- ret, track_window = cv.meanShift(dst, track_window, term_crit)
- # Draw it on image
- x,y,w,h = track_window
- img2 = cv.rectangle(frame, (x,y), (x+w,y+h), 255,2)
- cv.imshow('img2',img2)
- k = cv.waitKey(30) & 0xff
- if k == 27:
- break
- else:
- break
|