123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- #!/usr/bin/env python
- '''
- MOSSE tracking sample
- This sample implements correlation-based tracking approach, described in [1].
- Usage:
- mosse.py [--pause] [<video source>]
- --pause - Start with playback paused at the first video frame.
- Useful for tracking target selection.
- Draw rectangles around objects with a mouse to track them.
- Keys:
- SPACE - pause video
- c - clear targets
- [1] David S. Bolme et al. "Visual Object Tracking using Adaptive Correlation Filters"
- http://www.cs.colostate.edu/~draper/papers/bolme_cvpr10.pdf
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import sys
- PY3 = sys.version_info[0] == 3
- if PY3:
- xrange = range
- import numpy as np
- import cv2 as cv
- from common import draw_str, RectSelector
- import video
- def rnd_warp(a):
- h, w = a.shape[:2]
- T = np.zeros((2, 3))
- coef = 0.2
- ang = (np.random.rand()-0.5)*coef
- c, s = np.cos(ang), np.sin(ang)
- T[:2, :2] = [[c,-s], [s, c]]
- T[:2, :2] += (np.random.rand(2, 2) - 0.5)*coef
- c = (w/2, h/2)
- T[:,2] = c - np.dot(T[:2, :2], c)
- return cv.warpAffine(a, T, (w, h), borderMode = cv.BORDER_REFLECT)
- def divSpec(A, B):
- Ar, Ai = A[...,0], A[...,1]
- Br, Bi = B[...,0], B[...,1]
- C = (Ar+1j*Ai)/(Br+1j*Bi)
- C = np.dstack([np.real(C), np.imag(C)]).copy()
- return C
- eps = 1e-5
- class MOSSE:
- def __init__(self, frame, rect):
- x1, y1, x2, y2 = rect
- w, h = map(cv.getOptimalDFTSize, [x2-x1, y2-y1])
- x1, y1 = (x1+x2-w)//2, (y1+y2-h)//2
- self.pos = x, y = x1+0.5*(w-1), y1+0.5*(h-1)
- self.size = w, h
- img = cv.getRectSubPix(frame, (w, h), (x, y))
- self.win = cv.createHanningWindow((w, h), cv.CV_32F)
- g = np.zeros((h, w), np.float32)
- g[h//2, w//2] = 1
- g = cv.GaussianBlur(g, (-1, -1), 2.0)
- g /= g.max()
- self.G = cv.dft(g, flags=cv.DFT_COMPLEX_OUTPUT)
- self.H1 = np.zeros_like(self.G)
- self.H2 = np.zeros_like(self.G)
- for _i in xrange(128):
- a = self.preprocess(rnd_warp(img))
- A = cv.dft(a, flags=cv.DFT_COMPLEX_OUTPUT)
- self.H1 += cv.mulSpectrums(self.G, A, 0, conjB=True)
- self.H2 += cv.mulSpectrums( A, A, 0, conjB=True)
- self.update_kernel()
- self.update(frame)
- def update(self, frame, rate = 0.125):
- (x, y), (w, h) = self.pos, self.size
- self.last_img = img = cv.getRectSubPix(frame, (w, h), (x, y))
- img = self.preprocess(img)
- self.last_resp, (dx, dy), self.psr = self.correlate(img)
- self.good = self.psr > 8.0
- if not self.good:
- return
- self.pos = x+dx, y+dy
- self.last_img = img = cv.getRectSubPix(frame, (w, h), self.pos)
- img = self.preprocess(img)
- A = cv.dft(img, flags=cv.DFT_COMPLEX_OUTPUT)
- H1 = cv.mulSpectrums(self.G, A, 0, conjB=True)
- H2 = cv.mulSpectrums( A, A, 0, conjB=True)
- self.H1 = self.H1 * (1.0-rate) + H1 * rate
- self.H2 = self.H2 * (1.0-rate) + H2 * rate
- self.update_kernel()
- @property
- def state_vis(self):
- f = cv.idft(self.H, flags=cv.DFT_SCALE | cv.DFT_REAL_OUTPUT )
- h, w = f.shape
- f = np.roll(f, -h//2, 0)
- f = np.roll(f, -w//2, 1)
- kernel = np.uint8( (f-f.min()) / f.ptp()*255 )
- resp = self.last_resp
- resp = np.uint8(np.clip(resp/resp.max(), 0, 1)*255)
- vis = np.hstack([self.last_img, kernel, resp])
- return vis
- def draw_state(self, vis):
- (x, y), (w, h) = self.pos, self.size
- x1, y1, x2, y2 = int(x-0.5*w), int(y-0.5*h), int(x+0.5*w), int(y+0.5*h)
- cv.rectangle(vis, (x1, y1), (x2, y2), (0, 0, 255))
- if self.good:
- cv.circle(vis, (int(x), int(y)), 2, (0, 0, 255), -1)
- else:
- cv.line(vis, (x1, y1), (x2, y2), (0, 0, 255))
- cv.line(vis, (x2, y1), (x1, y2), (0, 0, 255))
- draw_str(vis, (x1, y2+16), 'PSR: %.2f' % self.psr)
- def preprocess(self, img):
- img = np.log(np.float32(img)+1.0)
- img = (img-img.mean()) / (img.std()+eps)
- return img*self.win
- def correlate(self, img):
- C = cv.mulSpectrums(cv.dft(img, flags=cv.DFT_COMPLEX_OUTPUT), self.H, 0, conjB=True)
- resp = cv.idft(C, flags=cv.DFT_SCALE | cv.DFT_REAL_OUTPUT)
- h, w = resp.shape
- _, mval, _, (mx, my) = cv.minMaxLoc(resp)
- side_resp = resp.copy()
- cv.rectangle(side_resp, (mx-5, my-5), (mx+5, my+5), 0, -1)
- smean, sstd = side_resp.mean(), side_resp.std()
- psr = (mval-smean) / (sstd+eps)
- return resp, (mx-w//2, my-h//2), psr
- def update_kernel(self):
- self.H = divSpec(self.H1, self.H2)
- self.H[...,1] *= -1
- class App:
- def __init__(self, video_src, paused = False):
- self.cap = video.create_capture(video_src)
- _, self.frame = self.cap.read()
- cv.imshow('frame', self.frame)
- self.rect_sel = RectSelector('frame', self.onrect)
- self.trackers = []
- self.paused = paused
- def onrect(self, rect):
- frame_gray = cv.cvtColor(self.frame, cv.COLOR_BGR2GRAY)
- tracker = MOSSE(frame_gray, rect)
- self.trackers.append(tracker)
- def run(self):
- while True:
- if not self.paused:
- ret, self.frame = self.cap.read()
- if not ret:
- break
- frame_gray = cv.cvtColor(self.frame, cv.COLOR_BGR2GRAY)
- for tracker in self.trackers:
- tracker.update(frame_gray)
- vis = self.frame.copy()
- for tracker in self.trackers:
- tracker.draw_state(vis)
- if len(self.trackers) > 0:
- cv.imshow('tracker state', self.trackers[-1].state_vis)
- self.rect_sel.draw(vis)
- cv.imshow('frame', vis)
- ch = cv.waitKey(10)
- if ch == 27:
- break
- if ch == ord(' '):
- self.paused = not self.paused
- if ch == ord('c'):
- self.trackers = []
- if __name__ == '__main__':
- print (__doc__)
- import sys, getopt
- opts, args = getopt.getopt(sys.argv[1:], '', ['pause'])
- opts = dict(opts)
- try:
- video_src = args[0]
- except:
- video_src = '0'
- App(video_src, paused = '--pause' in opts).run()
|