123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- #!/usr/bin/env python
- '''
- Lucas-Kanade tracker
- ====================
- Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
- for track initialization and back-tracking for match verification
- between frames.
- Usage
- -----
- lk_track.py [<video_source>]
- Keys
- ----
- ESC - exit
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- import video
- from common import anorm2, draw_str
- lk_params = dict( winSize = (15, 15),
- maxLevel = 2,
- criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
- feature_params = dict( maxCorners = 500,
- qualityLevel = 0.3,
- minDistance = 7,
- blockSize = 7 )
- class App:
- def __init__(self, video_src):
- self.track_len = 10
- self.detect_interval = 5
- self.tracks = []
- self.cam = video.create_capture(video_src)
- self.frame_idx = 0
- def run(self):
- while True:
- _ret, frame = self.cam.read()
- frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
- vis = frame.copy()
- if len(self.tracks) > 0:
- img0, img1 = self.prev_gray, frame_gray
- p0 = np.float32([tr[-1] for tr in self.tracks]).reshape(-1, 1, 2)
- p1, _st, _err = cv.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
- p0r, _st, _err = cv.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
- d = abs(p0-p0r).reshape(-1, 2).max(-1)
- good = d < 1
- new_tracks = []
- for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
- if not good_flag:
- continue
- tr.append((x, y))
- if len(tr) > self.track_len:
- del tr[0]
- new_tracks.append(tr)
- cv.circle(vis, (int(x), int(y)), 2, (0, 255, 0), -1)
- self.tracks = new_tracks
- cv.polylines(vis, [np.int32(tr) for tr in self.tracks], False, (0, 255, 0))
- draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks))
- if self.frame_idx % self.detect_interval == 0:
- mask = np.zeros_like(frame_gray)
- mask[:] = 255
- for x, y in [np.int32(tr[-1]) for tr in self.tracks]:
- cv.circle(mask, (x, y), 5, 0, -1)
- p = cv.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
- if p is not None:
- for x, y in np.float32(p).reshape(-1, 2):
- self.tracks.append([(x, y)])
- self.frame_idx += 1
- self.prev_gray = frame_gray
- cv.imshow('lk_track', vis)
- ch = cv.waitKey(1)
- if ch == 27:
- break
- def main():
- import sys
- try:
- video_src = sys.argv[1]
- except:
- video_src = 0
- App(video_src).run()
- print('Done')
- if __name__ == '__main__':
- print(__doc__)
- main()
- cv.destroyAllWindows()
|