123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- #!/usr/bin/env python
- '''
- Lucas-Kanade homography tracker
- ===============================
- Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
- for track initialization and back-tracking for match verification
- between frames. Finds homography between reference and current views.
- Usage
- -----
- lk_homography.py [<video_source>]
- Keys
- ----
- ESC - exit
- SPACE - start tracking
- r - toggle RANSAC
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- import video
- from common import draw_str
- from video import presets
- lk_params = dict( winSize = (19, 19),
- maxLevel = 2,
- criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
- feature_params = dict( maxCorners = 1000,
- qualityLevel = 0.01,
- minDistance = 8,
- blockSize = 19 )
- def checkedTrace(img0, img1, p0, back_threshold = 1.0):
- p1, _st, _err = cv.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
- p0r, _st, _err = cv.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
- d = abs(p0-p0r).reshape(-1, 2).max(-1)
- status = d < back_threshold
- return p1, status
- green = (0, 255, 0)
- red = (0, 0, 255)
- class App:
- def __init__(self, video_src):
- self.cam = self.cam = video.create_capture(video_src, presets['book'])
- self.p0 = None
- self.use_ransac = True
- def run(self):
- while True:
- _ret, frame = self.cam.read()
- frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
- vis = frame.copy()
- if self.p0 is not None:
- p2, trace_status = checkedTrace(self.gray1, frame_gray, self.p1)
- self.p1 = p2[trace_status].copy()
- self.p0 = self.p0[trace_status].copy()
- self.gray1 = frame_gray
- if len(self.p0) < 4:
- self.p0 = None
- continue
- H, status = cv.findHomography(self.p0, self.p1, (0, cv.RANSAC)[self.use_ransac], 10.0)
- h, w = frame.shape[:2]
- overlay = cv.warpPerspective(self.frame0, H, (w, h))
- vis = cv.addWeighted(vis, 0.5, overlay, 0.5, 0.0)
- for (x0, y0), (x1, y1), good in zip(self.p0[:,0], self.p1[:,0], status[:,0]):
- if good:
- cv.line(vis, (int(x0), int(y0)), (int(x1), int(y1)), (0, 128, 0))
- cv.circle(vis, (int(x1), int(y1)), 2, (red, green)[good], -1)
- draw_str(vis, (20, 20), 'track count: %d' % len(self.p1))
- if self.use_ransac:
- draw_str(vis, (20, 40), 'RANSAC')
- else:
- p = cv.goodFeaturesToTrack(frame_gray, **feature_params)
- if p is not None:
- for x, y in p[:,0]:
- cv.circle(vis, (int(x), int(y)), 2, green, -1)
- draw_str(vis, (20, 20), 'feature count: %d' % len(p))
- cv.imshow('lk_homography', vis)
- ch = cv.waitKey(1)
- if ch == 27:
- break
- if ch == ord(' '):
- self.frame0 = frame.copy()
- self.p0 = cv.goodFeaturesToTrack(frame_gray, **feature_params)
- if self.p0 is not None:
- self.p1 = self.p0
- self.gray0 = frame_gray
- self.gray1 = frame_gray
- if ch == ord('r'):
- self.use_ransac = not self.use_ransac
- def main():
- import sys
- try:
- video_src = sys.argv[1]
- except:
- video_src = 0
- App(video_src).run()
- print('Done')
- if __name__ == '__main__':
- print(__doc__)
- main()
- cv.destroyAllWindows()
|