123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- #!/usr/bin/env python
- '''
- The sample demonstrates how to train Random Trees classifier
- (or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset.
- We use the sample database letter-recognition.data
- from UCI Repository, here is the link:
- Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).
- UCI Repository of machine learning databases
- [http://www.ics.uci.edu/~mlearn/MLRepository.html].
- Irvine, CA: University of California, Department of Information and Computer Science.
- The dataset consists of 20000 feature vectors along with the
- responses - capital latin letters A..Z.
- The first 10000 samples are used for training
- and the remaining 10000 - to test the classifier.
- ======================================================
- USAGE:
- letter_recog.py [--model <model>]
- [--data <data fn>]
- [--load <model fn>] [--save <model fn>]
- Models: RTrees, KNearest, Boost, SVM, MLP
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- def load_base(fn):
- a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
- samples, responses = a[:,1:], a[:,0]
- return samples, responses
- class LetterStatModel(object):
- class_n = 26
- train_ratio = 0.5
- def load(self, fn):
- self.model = self.model.load(fn)
- def save(self, fn):
- self.model.save(fn)
- def unroll_samples(self, samples):
- sample_n, var_n = samples.shape
- new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32)
- new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
- new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n)
- return new_samples
- def unroll_responses(self, responses):
- sample_n = len(responses)
- new_responses = np.zeros(sample_n*self.class_n, np.int32)
- resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n )
- new_responses[resp_idx] = 1
- return new_responses
- class RTrees(LetterStatModel):
- def __init__(self):
- self.model = cv.ml.RTrees_create()
- def train(self, samples, responses):
- self.model.setMaxDepth(20)
- self.model.train(samples, cv.ml.ROW_SAMPLE, responses.astype(int))
- def predict(self, samples):
- _ret, resp = self.model.predict(samples)
- return resp.ravel()
- class KNearest(LetterStatModel):
- def __init__(self):
- self.model = cv.ml.KNearest_create()
- def train(self, samples, responses):
- self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
- def predict(self, samples):
- _retval, results, _neigh_resp, _dists = self.model.findNearest(samples, k = 10)
- return results.ravel()
- class Boost(LetterStatModel):
- def __init__(self):
- self.model = cv.ml.Boost_create()
- def train(self, samples, responses):
- _sample_n, var_n = samples.shape
- new_samples = self.unroll_samples(samples)
- new_responses = self.unroll_responses(responses)
- var_types = np.array([cv.ml.VAR_NUMERICAL] * var_n + [cv.ml.VAR_CATEGORICAL, cv.ml.VAR_CATEGORICAL], np.uint8)
- self.model.setWeakCount(15)
- self.model.setMaxDepth(10)
- self.model.train(cv.ml.TrainData_create(new_samples, cv.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
- def predict(self, samples):
- new_samples = self.unroll_samples(samples)
- _ret, resp = self.model.predict(new_samples)
- return resp.ravel().reshape(-1, self.class_n).argmax(1)
- class SVM(LetterStatModel):
- def __init__(self):
- self.model = cv.ml.SVM_create()
- def train(self, samples, responses):
- self.model.setType(cv.ml.SVM_C_SVC)
- self.model.setC(1)
- self.model.setKernel(cv.ml.SVM_RBF)
- self.model.setGamma(.1)
- self.model.train(samples, cv.ml.ROW_SAMPLE, responses.astype(int))
- def predict(self, samples):
- _ret, resp = self.model.predict(samples)
- return resp.ravel()
- class MLP(LetterStatModel):
- def __init__(self):
- self.model = cv.ml.ANN_MLP_create()
- def train(self, samples, responses):
- _sample_n, var_n = samples.shape
- new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
- layer_sizes = np.int32([var_n, 100, 100, self.class_n])
- self.model.setLayerSizes(layer_sizes)
- self.model.setTrainMethod(cv.ml.ANN_MLP_BACKPROP)
- self.model.setBackpropMomentumScale(0.0)
- self.model.setBackpropWeightScale(0.001)
- self.model.setTermCriteria((cv.TERM_CRITERIA_COUNT, 20, 0.01))
- self.model.setActivationFunction(cv.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
- self.model.train(samples, cv.ml.ROW_SAMPLE, np.float32(new_responses))
- def predict(self, samples):
- _ret, resp = self.model.predict(samples)
- return resp.argmax(-1)
- def main():
- import getopt
- import sys
- models = [RTrees, KNearest, Boost, SVM, MLP] # NBayes
- models = dict( [(cls.__name__.lower(), cls) for cls in models] )
- args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save='])
- args = dict(args)
- args.setdefault('--model', 'svm')
- args.setdefault('--data', 'letter-recognition.data')
- datafile = cv.samples.findFile(args['--data'])
- print('loading data %s ...' % datafile)
- samples, responses = load_base(datafile)
- Model = models[args['--model']]
- model = Model()
- train_n = int(len(samples)*model.train_ratio)
- if '--load' in args:
- fn = args['--load']
- print('loading model from %s ...' % fn)
- model.load(fn)
- else:
- print('training %s ...' % Model.__name__)
- model.train(samples[:train_n], responses[:train_n])
- print('testing...')
- train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n].astype(int))
- test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:].astype(int))
- print('train rate: %f test rate: %f' % (train_rate*100, test_rate*100))
- if '--save' in args:
- fn = args['--save']
- print('saving model to %s ...' % fn)
- model.save(fn)
- print('Done')
- if __name__ == '__main__':
- print(__doc__)
- main()
- cv.destroyAllWindows()
|